3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissipationless collapse and the dynamical mass-ellipticity relation of elliptical galaxies in Newtonian gravity and MOND

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context. Deur (2014) and Winters et al. (2023) proposed an empirical relation between the dark to total mass ratio and ellipticity in elliptical galaxies from their observed total dynamical mass-to-light ratio data M/L = (14.1 +/- 5.4){\epsilon}. In other words, the larger is the content of dark matter in the galaxy, the more the stellar component would be flattened. Such observational claim, if true, appears to be in stark contrast with the common intuition of the formation of galaxies inside dark halos with reasonably spherical symmetry. Aims. Comparing the processes of dissipationless galaxy formation in different theories of gravity, and emergence of the galaxy scaling relations therein is an important frame where, in principle one could discriminate them. Methods. By means of collisionless N-body simulations in modified Newtonian dynamics (MOND) and Newtonian gravity with and without active dark matter halos, with both spherical and clumpy initial structure, I study the trends of intrinsic and projected ellipticities, S\'ersic index and anisotropy with the total dynamical to stellar mass ratio. Results. It is shown that, the end products of both cold spherical collapses and mergers of smaller clumps depart more and more from the spherical symmetry for increasing values of the total dynamical mass to stellar mass, at least in a range of halo masses. The equivalent Newtonian systems of the end products of MOND collapses show a similar behaviour. The M/L relation obtained from the numerical experiments in both gravities is however rather different from that reported by Deur and coauthors.

          Related collections

          Author and article information

          Journal
          18 October 2023
          Article
          2310.12114
          885b8306-49d8-401c-a31b-95f030e492b5

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          10 pages, 8 figures, submitted, comments welcome
          astro-ph.GA

          Galaxy astrophysics
          Galaxy astrophysics

          Comments

          Comment on this article