17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Context-Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.

          Author Summary

          The amygdaloid complex is one of the key brain structures involved in fear-related processes. A typical way to study neural correlates of fear expression (e.g. freezing response) in the amygdala is to perform a fear conditioning paradigm, which yields a conditioned fear response. This response can be reversed by another procedure called fear extinction. Thanks to the experimental approaches to date we have some understanding about the putative roles of specific subnuclei within the amygdala in the formation of these fear and extinction memories. Here, we complement the experimental studies by providing a computational model that addresses the question of how fear and extinction memories are encoded in the amygdala, and specifically, in the basal nucleus (BA). We propose a specific neural mechanism to explain how the BA may integrate information about a salient, conditioned stimulus and the environment, thereby enabling it to switch the state of the animal from low to high fear and vice versa. We also provide possible explanations for various other behavioral findings, such as the recovery of fear after it had been extinguished (renewal). Finally, we make specific, experimentally testable predictions that need to be addressed in future work.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Interneurons of the neocortical inhibitory system.

          Mammals adapt to a rapidly changing world because of the sophisticated cognitive functions that are supported by the neocortex. The neocortex, which forms almost 80% of the human brain, seems to have arisen from repeated duplication of a stereotypical microcircuit template with subtle specializations for different brain regions and species. The quest to unravel the blueprint of this template started more than a century ago and has revealed an immensely intricate design. The largest obstacle is the daunting variety of inhibitory interneurons that are found in the circuit. This review focuses on the organizing principles that govern the diversity of inhibitory interneurons and their circuits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.

            Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pattern separation in the dentate gyrus and CA3 of the hippocampus.

              Theoretical models have long pointed to the dentate gyrus as a possible source of neuronal pattern separation. In agreement with predictions from these models, we show that minimal changes in the shape of the environment in which rats are exploring can substantially alter correlated activity patterns among place-modulated granule cells in the dentate gyrus. When the environments are made more different, new cell populations are recruited in CA3 but not in the dentate gyrus. These results imply a dual mechanism for pattern separation in which signals from the entorhinal cortex can be decorrelated both by changes in coincidence patterns in the dentate gyrus and by recruitment of nonoverlapping cell assemblies in CA3.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                March 2011
                March 2011
                17 March 2011
                : 7
                : 3
                : e1001104
                Affiliations
                [1 ]Bernstein Center for Computational Neuroscience Frieburg, Freiburg, Germany
                [2 ]Neurocentre Magendie, Bordeaux Cedex, France
                [3 ]INSERM U862, Bordeaux Cedex, France
                [4 ]Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
                [5 ]Department of Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany
                John Radcliffe Hospital, United Kingdom
                Author notes

                Conceived and designed the experiments: IV CH AL AA AK. Performed the experiments: IV AK. Analyzed the data: IV CH AK. Wrote the paper: IV CH AL AA AK.

                Article
                10-PLCB-RA-2873R6
                10.1371/journal.pcbi.1001104
                3060104
                21437238
                8876a5a0-6a9b-49ba-ad06-ef3ee8ad23cf
                Vlachos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 September 2010
                : 7 February 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Neuroscience/Animal Cognition
                Neuroscience/Behavioral Neuroscience
                Neuroscience/Theoretical Neuroscience

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article