25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stretching and breaking of ultrathin MoS2.

      ACS Nano
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report on measurements of the stiffness and breaking strength of monolayer MoS(2), a new semiconducting analogue of graphene. Single and bilayer MoS(2) is exfoliated from bulk and transferred to a substrate containing an array of microfabricated circular holes. The resulting suspended, free-standing membranes are deformed and eventually broken using an atomic force microscope. We find that the in-plane stiffness of monolayer MoS(2) is 180 ± 60 Nm(-1), corresponding to an effective Young's modulus of 270 ± 100 GPa, which is comparable to that of steel. Breaking occurs at an effective strain between 6 and 11% with the average breaking strength of 15 ± 3 Nm(-1) (23 GPa). The strength of strongest monolayer membranes is 11% of its Young's modulus, corresponding to the upper theoretical limit which indicates that the material can be highly crystalline and almost defect-free. Our results show that monolayer MoS(2) could be suitable for a variety of applications such as reinforcing elements in composites and for fabrication of flexible electronic devices.

          Related collections

          Author and article information

          Journal
          22087740
          10.1021/nn203879f

          Comments

          Comment on this article

          scite_