27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fluid shear stress regulates HepG2 cell migration though time-dependent integrin signaling cascade

      1 , 1 , 1 , 1 , 1 , 1
      Cell Adhesion & Migration
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) is a subtype of malignant liver cancer with poor prognosis and limited treatment options. It is noteworthy that mechanical forces in tumor microenvironment play a pivotal role in mediating the behaviors and functions of tumor cells. As an instrumental type of mechanical forces in vivo, fluid shear stress (FSS) has been reported having potent physiologic and pathologic effects on cancer progression. However, the time-dependent mechanochemical transduction in HCC induced by FSS remains unclear. In this study, hepatocellular carcinoma HepG2 cells were exposed to 1.4 dyn/cm2 FSS for transient duration (15s and 30s), short duration (5 min, 15 min and 30 min) and long duration (1h, 2h and 4h), respectively. The expression and translocation of Integrins induced FAK-Rho GTPases signaling events were examined. Our results showed that FSS endowed HepG2 cells with higher migration ability via reorganizing cellular F-actin and disrupting intercellular tight junctions. We further demonstrated that FSS regulated the expression and translocation of Integrins and their downstream signaling cascade in time-dependent patterns. The FSS downregulated focal adhesion components (Paxillin, Vinculin and Talin) while upregulated the expression of Rho GTPases (Cdc42, Rac1 and RhoA) in long durations. These results indicated that FSS enhanced tumor cell migration through Integrins-FAK-Rho GTPases signaling pathway in time-dependent manners. Our in vitro findings shed new light on the role of FSS acting in physiologic and pathological processes during tumor progression, which has emerged as a promising clinical strategy for liver carcinoma.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Integrins: emerging paradigms of signal transduction.

          Integrins receive signals from other receptors that lead to activation of ligand binding (inside-out signaling) and matrix assembly. Upon binding ligands, they also activate intracellular signaling pathways. These signals converse with pathways that are initiated by soluble ligands to regulate cell functions. In this way, cell adhesion is coordinated with other events to orchestrate complex cellular behavior.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of integrins in endothelial mechanosensing of shear stress.

            The focal pattern of atherosclerotic lesions in arterial vessels suggests that local blood flow patterns are important factors in atherosclerosis. Although disturbed flows in the branches and curved regions are proatherogenic, laminar flows in the straight parts are atheroprotective. Results from in vitro studies on cultured vascular endothelial cells with the use of flow channels suggest that integrins and the associated RhoA small GTPase play important roles in the mechanotransduction mechanism by which shear stress is converted to cascades of molecular signaling to modulate gene expression. By interacting dynamically with extracellular matrix proteins, the mechanosensitive integrins activate RhoA and many signaling molecules in the focal adhesions and cytoplasm. Through such mechanotransduction mechanisms, laminar shear stress upregulates genes involved in antiapoptosis, cell cycle arrest, morphological remodeling, and NO production, thus contributing to the atheroprotective effects. This review summarizes some of the recent findings relevant to these mechanotransduction mechanisms. These studies show that integrins play an important role in mechanosensing in addition to their involvement in cell attachment and migration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microlymphatics and lymph flow.

              A careful review of several different organs shows that with the information available today the beginnings of the microlymphatics in the tissue consist of endothelialized tubes only. Lymphatic smooth muscle within the collecting lymphatics appears further downstream, in some organs only outside the parenchyma. This particular anatomic picture has been observed in many different mammalian organs and in humans. The nonmuscular, so-called initial, lymphatics are the site of interstitial fluid absorption that requires only small and transient pressure gradients from the interstitium into the initial lymphatics. A fundamental question concerns the mechanism that causes expansion and compression of the initial lymphatics. I presented several realistic proposals based on information currently on hand relevant to the tissue surrounding the initial lymphatics. To achieve a continuous lymphatic output, periodic (time variant) tissue stresses need to be applied. They include arterial pressure pulsations; arteriolar vasomotion; intestinal smooth muscle contractions and motilities; skeletal muscle contraction; skin tension; and external compression, such as during walking, running, or massage, respiration, bronchiole constriction, periodic tension in tendon, contraction and relaxation of the diaphragm, tension in the pleural space during respiration, and contractions of the heart. The nonmuscular initial lymphatic system drains into a set of contractile collecting lymphatics, which by way of intrinsic smooth muscle propel lymph fluid. The exact transition between noncontractile and contractile lymphatics has been established only in a limited number of organs and requires further exploration. Retrograde flow of lymph fluid is prevented by valves. There are the usual macroscopic bileaflet valves in the initial and collecting lymphatics and also microscopic lymphatic endothelial valves on the wall of the initial lymphatics. The latter appear to prevent convective reflow into the interstitium during lymphatic compression. Many of the lymph pump mechanisms have been proposed in the past, and most authors agree that these mechanisms influence lymph flow. However, the decisive experiments have not been carried out to establish to what degree these mechanisms are sufficient to explain lymph flow rates in vivo. Because individual organs have different extrinsic pumps at the level of the initial lymphatics, future experiments need to be designed such that each pump mechanism is examined individually so as to make it possible to evaluate the additive effect on the resultant whole organ lymph flow.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Journal
                Cell Adhesion & Migration
                Cell Adhesion & Migration
                Informa UK Limited
                1933-6918
                1933-6926
                June 29 2017
                January 02 2018
                June 22 2017
                January 02 2018
                : 12
                : 1
                : 56-68
                Affiliations
                [1 ] Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
                Article
                10.1080/19336918.2017.1319042
                5810774
                28636424
                88da21e0-9c38-4fd0-b42e-d0834fb97a3f
                © 2018
                History

                Comments

                Comment on this article