6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fused silica microchannel fabrication with smooth surface and high etching selectivity

      , , , , ,
      Journal of Micromechanics and Microengineering
      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Channel fabrication technology has become increasingly important for microfluidic and nanofluidic devices. In particular, glass channels have high chemical and physical stability, high optical transparency, and ease of surface modification, so that there is increasing interest in glass microfluidic devices for chemical experiments in microfluidics and nanofluidics. For the fabrication of glass channels, especially those with a high aspect ratio (depth/width), lithography using a metal resist and dry etching have mainly been used. However, there are still issues involving the surface roughness of the etched channel and the low etching selectivity. In this study, a microchannel fabrication method with high etching selectivity that produces a smooth etched surface was developed. First, interference during dry etching by remaining Cr particles after the photolithography and Cr etching processes was assumed as the cause of the rough etched surface. Three different dry etching processes were introduced to verify this. In process 1 without removal of the Cr particles, the etched surface was not flat and had a 1 μm scale roughness. In process 2 where a cleaning process was included and high power etching was conducted, a smooth surface with a 1 nm scale roughness and a faster etching rate of 0.3 μm min −1 were obtained. For this high-power etching condition, the etching selectivity (fused silica/Cr) was relatively low at approximately 39–43. In process 3 with a cleaning process and low-power etching, although the etching rate was relatively low at 0.1 μm min −1, a smooth surface with 1 nm scale roughness (10 nm scale roughness deeper than 40 μm in the depth region) and a much higher etching selectivity of approximately 79–84 were obtained. The dry etching method presented in this study represents a significant contribution to microfluidics/nanofluidics for microchannel/nanochannel fabrication.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The origins and the future of microfluidics.

          The manipulation of fluids in channels with dimensions of tens of micrometres--microfluidics--has emerged as a distinct new field. Microfluidics has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology. But the field is still at an early stage of development. Even as the basic science and technological demonstrations develop, other problems must be addressed: choosing and focusing on initial applications, and developing strategies to complete the cycle of development, including commercialization. The solutions to these problems will require imagination and ingenuity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From micro- to nanofabrication with soft materials.

            Soft materials are finding applications in areas ranging from microfluidic device technology to nanofabrication. We review recent work in these areas, discuss the motivation for device fabrication with soft materials, and describe applications of soft materials. In particular, we discuss active microfluidic devices for cell sorting and biochemical assays, replication-molded optics with subdiffraction limit features, and nanometer-scale resonators and wires formed from single-molecule DNA templates as examples of how the special properties of soft materials address outstanding problems in device fabrication.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Micro total analysis systems. 2. Analytical standard operations and applications.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Micromechanics and Microengineering
                J. Micromech. Microeng.
                IOP Publishing
                0960-1317
                1361-6439
                March 02 2023
                April 01 2023
                March 02 2023
                April 01 2023
                : 33
                : 4
                : 047001
                Article
                10.1088/1361-6439/acbe4a
                88f57a37-db46-4ec2-bf91-2f255ebd7da8
                © 2023

                https://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article