14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infectious blood source alters early foregut infection and regurgitative transmission of Yersinia pestis by rodent fleas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fleas can transmit Yersinia pestis by two mechanisms, early-phase transmission (EPT) and biofilm-dependent transmission (BDT). Transmission efficiency varies among flea species and the results from different studies have not always been consistent. One complicating variable is the species of rodent blood used for the infectious blood meal. To gain insight into the mechanism of EPT and the effect that host blood has on it, fleas were fed bacteremic mouse, rat, guinea pig, or gerbil blood; and the location and characteristics of the infection in the digestive tract and transmissibility of Y. pestis were assessed 1 to 3 days after infection. Surprisingly, 10–28% of two rodent flea species fed bacteremic rat or guinea pig blood refluxed a portion of the infected blood meal into the esophagus within 24 h of feeding. We term this phenomenon post-infection esophageal reflux (PIER). In contrast, PIER was rarely observed in rodent fleas fed bacteremic mouse or gerbil blood. PIER correlated with the accumulation of a dense mixed aggregate of Y. pestis, red blood cell stroma, and oxyhemoglobin crystals that filled the proventriculus. At their next feeding, fleas with PIER were 3–25 times more likely to appear partially blocked, with fresh blood retained within the esophagus, than were fleas without PIER. Three days after feeding on bacteremic rat blood, groups of Oropsylla montana transmitted significantly more CFU than did groups infected using mouse blood, and this enhanced transmission was biofilm-dependent. Our data support a model in which EPT results from regurgitation of Y. pestis from a partially obstructed flea foregut and that EPT and BDT can sometimes temporally overlap. The relative insolubility of the hemoglobin of rats and Sciurids and the slower digestion of their blood appears to promote regurgitative transmission, which may be one reason why these rodents are particularly prominent in plague ecology.

          Author summary

          Yersinia pestis, the bacterial agent of plague, is transmitted by fleas that feed on blood from rodents that carry this disease. The conclusions from studies comparing how efficiently fleas transmit plague after becoming infected have been inconsistent, possibly because a variety of rodent blood sources have been used. To investigate this, we infected three different flea species with Y. pestis using four different types of rodent blood and compared how well they could transmit three days later. The two rodent flea species that transmitted efficiently tended to reflux bacteria and blood into their esophagus when rat or guinea pig blood was used for the infections, but not when mouse or gerbil blood was used. This reflux phenomenon appears to be related to the solubility of the hemoglobin molecule of different rodent species. In contrast, cat fleas, inefficient transmitters, never refluxed their infected blood meal into the esophagus. Rodent fleas that were infected using reflux-inducing rat blood transmitted more Y. pestis than those that fed on infected mouse blood. These findings improve our understanding of how fleas transmit Y. pestis soon after becoming infected and suggest a reason why certain rodents figure more prominently in plague ecology than others.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Yersinia pestis--etiologic agent of plague.

          Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector.

            The ability to attach to epithelial cells, efface the microvillus surface, and disrupt the underlying cytoskeleton is characteristic of enteropathogenic Escherichia coli (EPEC). Recently, eae, a gene necessary for this phenomenon, was described (A. E. Jerse, J. Yu, B. D. Tall, and J. B. Kaper, Proc. Natl. Acad. Sci. USA 87:7839-7843, 1990). We report the use of a novel suicide vector containing the pir-dependent R6K replicon and the sacB gene of Bacillus subtilis to construct an eae deletion mutant of EPEC. This system enables positive selection for the loss of vector sequences. The resulting mutant, CVD206, is indistinguishable from the wild-type strain except for the loss of a 94-kDa outer membrane protein and attaching and effacing ability. Both the 94-kDa outer membrane protein and attaching and effacing ability are restored upon reintroduction of the eae gene on a plasmid. These results confirm the role of the eae gene in the attaching and effacing activity of EPEC and establish the utility of a new system for the construction of deletion mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmission of Yersinia pestis from an infectious biofilm in the flea vector.

              Transmission of plague by fleas depends on infection of the proventricular valve in the insect's foregut by a dense aggregate of Yersinia pestis. Proventricular infection requires the Y. pestis hemin storage (hms) genes; here, we show that the hms genes are also required to produce an extracellular matrix and a biofilm in vitro, supporting the hypothesis that a transmissible infection in the flea depends on the development of a biofilm on the hydrophobic, acellular surface of spines that line the interior of the proventriculus. The development of biofilm and proventricular infection did not depend on the 3 Y. pestis quorum-sensing systems. The extracellular matrix enveloping the Y. pestis biofilm in the flea appeared to incorporate components from the flea's blood meal, and bacteria released from the biofilm were more resistant to human polymorphonuclear leukocytes than were in vitro-grown Y. pestis. Enabling arthropod-borne transmission represents a novel function of a bacterial biofilm.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: InvestigationRole: MethodologyRole: ValidationRole: Writing – review & editing
                Role: InvestigationRole: ValidationRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: SupervisionRole: ValidationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                22 January 2018
                January 2018
                : 14
                : 1
                : e1006859
                Affiliations
                [001]Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana United States of America
                University of Pennsylvania, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-5052-5599
                Article
                PPATHOGENS-D-17-02092
                10.1371/journal.ppat.1006859
                5794196
                29357385
                8973638c-cad8-43a8-a579-9e1cfd00224b

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 25 September 2017
                : 6 January 2018
                Page count
                Figures: 7, Tables: 2, Pages: 27
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100006492, Division of Intramural Research, National Institute of Allergy and Infectious Diseases;
                Award Recipient : B. Joseph Hinnebusch
                This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health. https://www.niaid.nih.gov/about/division-intramural-research-overview. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Fleas
                Biology and Life Sciences
                Organisms
                Bacteria
                Yersinia
                Yersinia Pestis
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Yersinia
                Yersinia Pestis
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Yersinia
                Yersinia Pestis
                Biology and Life Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Esophagus
                Medicine and Health Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Esophagus
                Physical Sciences
                Materials Science
                Materials by Structure
                Crystals
                People and places
                Geographical locations
                North America
                United States
                Montana
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Rodents
                Biology and Life Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Medicine and Health Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Custom metadata
                vor-update-to-uncorrected-proof
                2018-02-01
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article