4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3D honeycomb-like hierarchical structured carbon (HSC) has been fabricated by one-step carbonization/activation of abundant and low cost bacterial cellulose for ultrahigh energy density supercapacitors.

          Abstract

          Porous carbon materials derived from various biomasses have aroused intense interest from the scientific community due to their low cost, abundant resources, eco-friendliness and easy fabrication. Herein, three-dimensional honeycomb-like hierarchical structured carbon (HSC) has been fabricated by one-step carbonization/activation of abundant and low cost bacterial cellulose for ultrahigh energy density supercapacitors. Benefitting from its interconnected honeycomb-like hierarchical and open structure with a high specific surface area, the prepared HSC exhibits a superhigh specific capacitance of 422 F g −1 at 2 mV s −1 with remarkable rate performance (73.7% at 500 mV s −1) in 6 M KOH aqueous electrolyte. Meanwhile, the symmetric supercapacitor could deliver a high energy density of 37.3 W h kg −1 in 1 M Na 2SO 4 aqueous electrolyte. To evaluate the practical application, an asymmetric supercapacitor fabricated with NiCoAl-layered double hydroxide as the positive electrode and HSC as the negative electrode achieves a conspicuously high energy density of 100 W h kg −1 and could still retain 33 W h kg −1 even at a high power density of 36.8 kW kg −1, which is highly comparable with or even higher than those of the previously reported asymmetric supercapacitors in aqueous electrolytes. Furthermore, our asymmetric supercapacitor exhibits excellent cycling stability along with 113% capacitance retention after 10 000 cycles. Such spectacular results will shed new light on biomass-derived carbon materials for the next generation of ultrafast energy storage devices with high energy density and excellent long cycle life.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Interpretation of Raman spectra of disordered and amorphous carbon

          Physical Review B, 61(20), 14095-14107
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advanced materials for energy storage.

            Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage.

              Micro-supercapacitors are promising energy storage devices that can complement or even replace batteries in miniaturized portable electronics and microelectromechanical systems. Their main limitation, however, is the low volumetric energy density when compared with batteries. Here, we describe a hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets. The nanomaterials form mesoporous structures of large specific surface area (396 m(2) g(-1)) and high electrical conductivity (102 S cm(-1)). We develop a scalable method to continuously produce the fibres using a silica capillary column functioning as a hydrothermal microreactor. The resultant fibres show a specific volumetric capacity as high as 305 F cm(-3) in sulphuric acid (measured at 73.5 mA cm(-3) in a three-electrode cell) or 300 F cm(-3) in polyvinyl alcohol (PVA)/H(3)PO(4) electrolyte (measured at 26.7 mA cm(-3) in a two-electrode cell). A full micro-supercapacitor with PVA/H(3)PO(4) gel electrolyte, free from binder, current collector and separator, has a volumetric energy density of ∼6.3 mWh cm(-3) (a value comparable to that of 4 V-500 µAh thin-film lithium batteries) while maintaining a power density more than two orders of magnitude higher than that of batteries, as well as a long cycle life. To demonstrate that our fibre-based, all-solid-state micro-supercapacitors can be easily integrated into miniaturized flexible devices, we use them to power an ultraviolet photodetector and a light-emitting diode.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2016
                2016
                : 4
                : 35
                : 13589-13602
                Affiliations
                [1 ]Key Laboratory of Superlight Materials and Surface Technology
                [2 ]Ministry of Education
                [3 ]College of Material Science and Chemical Engineering
                [4 ]Harbin Engineering University
                [5 ]Harbin 150001
                Article
                10.1039/C6TA05406D
                899953d3-13de-44c0-9700-b15ba84cd2bd
                © 2016
                History

                Comments

                Comment on this article