45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Growth Medium pH of Aeropyrum pernix on Structural Properties and Fluidity of Archaeosomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The influence of pH (6.0; 7.0; 8.0) of the growth medium of Aeropyrum pernix K1 on the structural organization and fluidity of archaeosomes prepared from a polar-lipid methanol fraction (PLMF) was investigated using fluorescence anisotropy and electron paramagnetic resonance (EPR) spectroscopy. Fluorescence anisotropy of the lipophilic fluorofore 1,6-diphenyl-1,3,5-hexatriene and empirical correlation time of the spin probe methylester of 5-doxylpalmitate revealed gradual changes with increasing temperature for the pH. A similar effect has been observed by using the trimethylammonium-6-diphenyl-1,3,5-hexatriene, although the temperature changes were much smaller. As the fluorescence steady-state anisotropy and the empirical correlation time obtained directly from the EPR spectra alone did not provide detailed structural information, the EPR spectra were analysed by computer simulation. This analysis showed that the archaeosome membranes are heterogeneous and composed of several regions with different modes of spin-probe motion at temperatures below 70°C. At higher temperatures, these membranes become more homogeneous and can be described by only one spectral component. Both methods indicate that the pH of the growth medium of A. pernix does not significantly influence its average membrane fluidity. These results are in accordance with TLC analysis of isolated lipids, which show no significant differences between PLMF isolated from A. pernix grown in medium with different pH.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

          Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nonlinear-Least-Squares Analysis of Slow-Motion EPR Spectra in One and Two Dimensions Using a Modified Levenberg–Marquardt Algorithm

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ancestral lipid biosynthesis and early membrane evolution.

              Archaea possess unique membrane phospholipids that generally comprise isoprenoid ethers built on sn-glycerol-1-phosphate (G1P). By contrast, bacterial and eukaryal membrane phospholipids are fatty acid esters linked to sn-glycerol-3-phosphate (G3P). The two key dehydrogenase enzymes that produce G1P and G3P, G1PDH and G3PDH, respectively, are not homologous. Various models propose that these enzymes originated during the speciation of the two prokaryotic domains, and the nature (and even the very existence) of lipid membranes in the last universal common ancestor (cenancestor) is subject to debate. G1PDH and G3PDH belong to two separate superfamilies that are universally distributed, suggesting that members of both superfamilies existed in the cenancestor. Furthermore, archaea possess homologues to known bacterial genes involved in fatty acid metabolism and synthesize fatty acid phospholipids. The cenancestor seems likely to have been endowed with membrane lipids whose synthesis was enzymatic but probably non-stereospecific.
                Bookmark

                Author and article information

                Journal
                Archaea
                Archaea
                ARCH
                Archaea
                Hindawi Publishing Corporation
                1472-3646
                1472-3654
                2012
                2012
                13 June 2012
                : 2012
                : 285152
                Affiliations
                1Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
                2EPR Center, Institute Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
                3Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CipKeBiP), Jamova 39, 1000 Ljubljana, Slovenia
                Author notes
                *Nataša Poklar Ulrih: natasa.poklar@ 123456bf.uni-lj.si

                Academic Editor: Parkson Chong

                Article
                10.1155/2012/285152
                3384975
                22778670
                89d417da-3181-4e9e-a80a-44e2e6b68d93
                Copyright © 2012 Ajda Ota et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 January 2012
                : 30 March 2012
                : 13 April 2012
                Categories
                Research Article

                Animal science & Zoology
                Animal science & Zoology

                Comments

                Comment on this article