61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of a Multi-Ingredient Performance Supplement on Hormonal Profiles and Body Composition in Male College Athletes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Periods of intense training can elicit an acute decline in performance and body composition associated with weakened hormone profiles. This study investigated the effects of a multi-ingredient performance supplement (MIPS) on body composition and hormone levels in college athletes following a six-week training protocol. Twenty male college athletes were equally assigned to MIPS and placebo (PLA) groups for supplementation (three pills, twice daily) in conjunction with resistance training and specialized sports training (e.g., nine total sessions/week) for six weeks. Dual Energy X-ray Absorptiometry determined body composition at weeks 0 and 6. Serum samples collected at weeks 0 and 6 determined free testosterone (FT), total testosterone (TT), IGF-1 and total estrogen (TE) levels. PLA experienced a significant decline in lean body mass (LBM) (−1.5 kg; p < 0.05) whereas the MIPS sustained LBM. The MIPS increased TT 21.9% (541.5 ± 48.7 to 639.1 ± 31.7) and increased FT 15.2% (13.28 ± 1.1 to 15.45 ± 1.3 ng/dL) ( p < 0.05). Conversely, PLA decreased TT 7.9% (554.5 ± 43.3 to 497.2 ± 39.1 ng/dL), decreased FT 17.4% (13.41 ± 1.8 to 11.23 ± 2.55 ng/dL), and decreased FT:E 12.06% ( p < 0.05). These findings suggest the MIPS can prevent decrements in LBM and anabolic hormone profiles during intense training periods.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men.

          We aimed to determine whether exercise-induced elevations in systemic concentration of testosterone, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) enhanced post-exercise myofibrillar protein synthesis (MPS) and phosphorylation of signalling proteins important in regulating mRNA translation. Eight young men (20 +/- 1.1 years, BMI = 26 +/- 3.5 kg m(-2)) completed two exercise protocols designed to maintain basal hormone concentrations (low hormone, LH) or elicit increases in endogenous hormones (high hormone, HH). In the LH protocol, participants performed a bout of unilateral resistance exercise with the elbow flexors. The HH protocol consisted of the same elbow flexor exercise with the contralateral arm followed immediately by high-volume leg resistance exercise. Participants consumed 25 g of protein after arm exercise to maximize MPS. Muscle biopsies and blood samples were taken as appropriate. There were no changes in serum testosterone, GH or IGF-1 after the LH protocol, whereas there were marked elevations after HH (testosterone, P < 0.001; GH, P < 0.001; IGF-1, P < 0.05). Exercise stimulated a rise in MPS in the biceps brachii (rest = 0.040 +/- 0.007, LH = 0.071 +/- 0.008, HH = 0.064 +/- 0.014% h(-1); P < 0.05) with no effect of elevated hormones (P = 0.72). Phosphorylation of the 70 kDa S6 protein kinase (p70S6K) also increased post-exercise (P < 0.05) with no differences between conditions. We conclude that the transient increases in endogenous purportedly anabolic hormones do not enhance fed-state anabolic signalling or MPS following resistance exercise. Local mechanisms are likely to be of predominant importance for the post-exercise increase in MPS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological elevation of endogenous hormones results in superior strength training adaptation.

            The purpose of this study was to determine the influence of transiently elevated endogenous hormone concentrations during exercise on strength training adaptations. Nine subjects performed four unilateral strength training session per week on the elbow flexors for 11 weeks. During two of the weekly sessions, leg exercises were performed to acutely increase the systemic anabolic hormone concentration immediately before the exercises for one of the elbow flexors (L + A). On the two other weekly training sessions, the contralateral elbow flexors were trained without prior leg exercises (A). By randomizing one arm of the subjects to serve as a control and the other as experimental, both conditions have the same nutritional and genetic environment. Serum testosterone and growth hormone was significantly increased during the L - A training session, while no hormonal changes occurred in the A session. Both A and L + A increased 1RM in biceps curl, peak power in elbow flexors at 30 and 60% of 1RM, and muscle volume of the elbow flexors (p < 0.05). However, only L + A achieved increase in CSA at the part of the arm flexors with largest cross sectional area (p < 0.001), while no changes occurred in A. L + A had superior relative improvement in 1RM biceps curl and favorable muscle adaptations in elbow flexors compared to A (p < 0.05). In conclusion, performing leg exercises prior to arm exercises, and thereby increasing the levels of serum testosterone and growth hormone, induced superior strength training adaptations compared to arm training without acute elevation of hormones.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Negative feedback regulation of the secretion and actions of gonadotropin-releasing hormone in males.

              This minireview considers the state of knowledge regarding the interactions of testicular hormones to regulate the secretion and actions of GnRH in males, with special focus on research conducted in rams and male rhesus monkeys. In these two species, LH secretion is under the negative feedback regulation of testicular steroids that act predominantly within the central nervous system to suppress GnRH secretion. The extent to which these actions of testicular steroids result from the direct actions of testosterone or its primary metabolites, estradiol or dihydrotestosterone, is unclear. Because GnRH neurons do not contain steroid receptors, the testicular steroids must influence GnRH neurons via afferent neurons, which are largely undefined. The feedback regulation of FSH is controlled by inhibin acting directly at the pituitary gland. In male rhesus monkeys, the feedback regulation of FSH secretion is accounted for totally by the physiologically relevant form of inhibin, which appears to be inhibin B. In rams, the feedback regulation of FSH secretion involves the actions of inhibin and testosterone and interactions between these hormones, but the physiologically relevant form of inhibin has not been determined. The mechanisms of action for inhibin are not known.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Sports (Basel)
                Sports (Basel)
                sports
                Sports
                MDPI
                2075-4663
                06 May 2016
                June 2016
                : 4
                : 2
                : 26
                Affiliations
                [1 ]Applied Science and Performance Institute, Tampa, FL 33607, USA; ryanplowery@ 123456gmail.com
                [2 ]Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL 33606, USA; kevinshields31@ 123456gmail.com (K.A.S.); jacobrauch1@ 123456gmail.com (J.T.R.); edesouza@ 123456ut.edu (E.O.D.S.)
                [3 ]Maximum Human Performance, West Caldwell, NJ 07006, USA; sdurkee@ 123456maxperformance.com (S.E.D.); gwilson@ 123456maxperformance.com (G.J.W.)
                Author notes
                [* ]Correspondence: msharp2113@ 123456gmail.com ; Tel.: +1-813-257-6314
                [†]

                These authors contributed equally to this work.

                Article
                sports-04-00026
                10.3390/sports4020026
                5968923
                8a20af6d-b77f-4a68-a4aa-2b01a75df780
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 March 2016
                : 18 April 2016
                Categories
                Article

                lean body mass,resistance training,testosterone,herbal ingredients

                Comments

                Comment on this article