12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Telehealth Encourages Patients with Diabetes in Racial and Ethnic Minority Groups to Return for in-Person Ophthalmic Care During the COVID-19 Pandemic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The COVID-19 pandemic had a disproportionate impact on patients from racial and/or ethnic minority groups, causing many to delay healthcare. This study evaluates the role telehealth visits played in helping patients with diabetes mellitus (DM) return for subsequent, in-person eye examinations after the outbreak of COVID-19.

          Methods

          This retrospective, cross-sectional study analyzed 8147 patients with DM who had completed an outpatient ophthalmology and/or optometry visit in 2019 and who were due for return evaluation after the outbreak of COVID-19 in 2020. Factors associated with return for subsequent, in-person eye examination were assessed.

          Results

          The mean age of patients was 68.8 (±13.0) years, and 42% were women. 7.4% of patients identified as Asian; 2.9% as Black; 3.4% as Hispanic or Latin American; 0.92%, as more than one race; 1.78%, as other races; and 80.7% as White. Patients from racial and/or ethnic minority groups completed fewer in-person eye examinations after the outbreak of COVID-19 compared with White patients (35.6% versus 44.5%, χ 2=36.172, P<0.001). However, both groups accessed telehealth services at a similar rate during this period (21.1% versus 21.9%, χ 2=0.417, P=0.518). Importantly, patients who received telehealth services returned for subsequent, in-person eye examinations at substantially higher rates, regardless of race (51.0% and 46.6%, respectively, χ 2=1.840, P=0.175). This offset the otherwise lower rate of return experienced by patients from racial and/or ethnic minority groups compared with White patients among the group of patients who did not receive any telehealth services (32.7% versus 42.7%, χ 2=36.582, P<0.001). The impact of telehealth on the likelihood of in-person return remained significant after taking into account age, gender, race, language, residence, severity of diabetic retinopathy (DR), and vision in a multivariate model.

          Conclusion

          Telehealth initiatives benefited patients from racial and/or ethnic minority groups by reducing disparities in access to eye care experienced during the COVID-19 pandemic.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)

          The American Diabetes Association and the European Association for the Study of Diabetes have briefly updated their 2018 recommendations on management of hyperglycemia, based on important research findings from large cardiovascular outcomes trials published in 2019. Important changes include: 1) the decision to treat high-risk individuals with a glucagon-like peptide 1 (GLP-1) receptor agonist or sodium–glucose cotransporter 2 (SGLT2) inhibitor to reduce major adverse cardiovascular events (MACE), hospitalization for heart failure (hHF), cardiovascular death, or chronic kidney disease (CKD) progression should be considered independently of baseline HbA1c or individualized HbA1c target; 2) GLP-1 receptor agonists can also be considered in patients with type 2 diabetes without established cardiovascular disease (CVD) but with the presence of specific indicators of high risk; and 3) SGLT2 inhibitors are recommended in patients with type 2 diabetes and heart failure, particularly those with heart failure with reduced ejection fraction, to reduce hHF, MACE, and CVD death, as well as in patients with type 2 diabetes with CKD (estimated glomerular filtration rate 30 to ≤60 mL min–1 [1.73 m]–2 or urinary albumin-to-creatinine ratio >30 mg/g, particularly >300 mg/g) to prevent the progression of CKD, hHF, MACE, and cardiovascular death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine — United States, December 2020

            On December 11, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine (Pfizer, Inc; Philadelphia, Pennsylvania), a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) ( 1 ). Vaccination with the Pfizer-BioNTech COVID-19 vaccine consists of 2 doses (30 μg, 0.3 mL each) administered intramuscularly, 3 weeks apart. On December 12, 2020, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation* for use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥16 years for the prevention of COVID-19. To guide its deliberations regarding the vaccine, ACIP employed the Evidence to Recommendation (EtR) Framework, † using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. § The recommendation for the Pfizer-BioNTech COVID-19 vaccine should be implemented in conjunction with ACIP’s interim recommendation for allocating initial supplies of COVID-19 vaccines ( 2 ). The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine under EUA is interim and will be updated as additional information becomes available. Since June 2020, ACIP has convened nine public meetings to review data on the epidemiology of COVID-19 and the potential use of COVID-19 vaccines, including the Pfizer-BioNTech COVID-19 vaccine ( 3 ). Within the EtR Framework, ACIP considered the importance of the public health problem of COVID-19, as well as issues of resource use, benefits and harms, patients’ values and preferences, acceptability, feasibility, and equity for the Pfizer-BioNTech COVID-19 vaccine. To inform the EtR Framework, the COVID-19 Vaccines Work Group, comprising experts in infectious disease, vaccinology, vaccine safety, public health, and ethics, held 27 meetings to review COVID-19 surveillance data, evidence for vaccine efficacy and safety, and implementation considerations for COVID-19 vaccines, including the Pfizer-BioNTech COVID-19 vaccine. After a systematic review of the literature, the Work Group used the GRADE approach to assess the certainty of evidence for outcomes related to the vaccine, rated on a scale of 1 (high certainty) to 4 (very low certainty) ( 4 ). Work Group conclusions regarding the evidence for the Pfizer-BioNTech COVID-19 vaccine were presented to ACIP at public meetings. The body of evidence for the Pfizer-BioNTech COVID-19 vaccine was primarily informed by one large, randomized, double-blind, placebo-controlled Phase II/III clinical trial that enrolled >43,000 participants (median age = 52 years, range = 16–91 years) ( 5 , 6 ). Interim findings from this clinical trial, using data from participants with a median of 2 months of follow-up, indicate that the Pfizer-BioNTech COVID-19 vaccine was 95.0% effective (95% confidence interval = 90.3%–97.6%) in preventing symptomatic laboratory-confirmed COVID-19 in persons without evidence of previous SARS-CoV-2 infection. Consistent high efficacy (≥92%) was observed across age, sex, race, and ethnicity categories and among persons with underlying medical conditions as well as among participants with evidence of previous SARS-CoV-2 infection. Although numbers of observed hospitalizations and deaths were low, the available data were consistent with reduced risk for these severe outcomes among vaccinated persons compared with that among placebo recipients. Among vaccine recipients, reactogenicity symptoms, defined as solicited local injection site or systemic reactions during the 7 days after vaccination, were frequent and mostly mild to moderate. Systemic adverse reactions were more commonly reported after the second dose than after the first dose and were generally more frequent and severe in persons aged 18–55 years than in those aged >55 years. Systemic adverse reactions had a median onset of 1–2 days after vaccine receipt and resolved in a median of 1 day. Severe local and systemic adverse reactions (grade ≥3, defined as interfering with daily activity) occurred more commonly in vaccine recipients than in placebo recipients. Among vaccine recipients, 8.8% reported any grade ≥3 reaction; the most common symptoms were fatigue (4.2%), headache (2.4%), muscle pain (1.8%), chills (1.7%), and injection site pain (1.4%). Generally, grade ≥3 reactions were more commonly reported after the second dose than after the first dose and were less prevalent in older than in younger participants. Serious adverse events ¶ were observed in a similar proportion of vaccine (0.6%) and placebo (0.5%) recipients and encompassed medical events occurring at a frequency similar to that within the general population ( 6 ). No specific safety concerns were identified in subgroup analyses by age, race, ethnicity, underlying medical conditions, or previous SARS-CoV-2 infection. A detailed summary of safety data, including information on reactogenicity, is available at https://www.cdc.gov/vaccines/covid-19/info-by-manufacturer/pfizer/reactogenicity.html. From the GRADE evidence assessment, the level of certainty for the benefits of the Pfizer-BioNTech COVID-19 vaccine was type 1 (high certainty) for the prevention of symptomatic COVID-19. Evidence was type 3 (low certainty) for the estimate of prevention of COVID-19–associated hospitalization and type 4 (very low certainty) for the estimate of prevention of death. Data on hospitalizations and deaths are limited at this time, but a vaccine that effectively prevents symptomatic infection is expected to also prevent hospitalizations and deaths. Regarding potential harms after vaccination, evidence was type 2 (moderate certainty) for serious adverse events and type 1 (high certainty) for reactogenicity. No data were available to assess the efficacy for prevention of asymptomatic SARS-CoV-2 infection. Data reviewed within the EtR Framework supported the use of the Pfizer-BioNTech COVID-19 vaccine. ACIP determined that COVID-19 is a major public health problem and that use of the Pfizer-BioNTech COVID-19 vaccine is a reasonable and efficient allocation of resources. Whereas there might be uncertainty in how all populations value the vaccine, it was determined that for most populations, the desirable effects outweigh the undesirable effects. The vaccine is probably acceptable to implementation stakeholders and feasible to implement in spite of difficult ultracold-chain storage and requirements for handling and administration. These requirements could limit the availability of the Pfizer-BioNTech COVID-19 vaccine to some populations thereby negatively impacting health equity. Therefore, efforts should be made to overcome these challenges and advance health equity. The GRADE evidence profile and EtR supporting evidence are available at https://www.cdc.gov/vaccines/acip/recs/grade/covid-19-pfizer-biontech-vaccine.html and https://www.cdc.gov/vaccines/acip/recs/grade/covid-19-pfizer-biontech-etr.html. Before vaccination, the EUA Fact Sheet should be provided to recipients and caregivers. Providers should counsel Pfizer-BioNTech COVID-19 vaccine recipients about expected systemic and local reactogenicity. Additional clinical considerations, including details of administration and use in special populations (e.g., persons who are pregnant or immunocompromised or who have severe allergies) are available at https://www.cdc.gov/vaccines/covid-19/info-by-manufacturer/pfizer/clinical-considerations.html Additional studies of safety and effectiveness are planned after authorization and will be important to inform future ACIP recommendations as well as increase public confidence in the COVID-19 vaccination program. The interim recommendation and clinical considerations are based on use of the Pfizer-BioNTech COVID-19 vaccine under an EUA and might change as more evidence becomes available. ACIP will continue to review additional data as they become available; updates to recommendations or clinical considerations will be posted on the ACIP website (https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19.html). Reporting of Vaccine Adverse Events Adverse events that occur in a recipient after receipt of COVID-19 vaccine should be reported to the Vaccine Adverse Events Reporting System (VAERS). FDA requires that vaccination providers report vaccination administration errors, serious adverse events, cases of multisystem inflammatory syndrome, and cases of COVID-19 that result in hospitalization or death after administration of COVID-19 vaccine under EUA. Reporting is encouraged for any clinically significant adverse event, whether or not it is clear that a vaccine caused the adverse event. Information on how to submit a report to VAERS is available at https://vaers.hhs.gov/index.html or 1-800-822-7967. In addition, CDC has developed a new, voluntary smartphone-based tool, v-safe, that uses text messaging and web surveys to provide near real-time health check-ins after patients receive COVID-19 vaccination. The CDC/v-safe call center follows up on reports to v-safe that indicate a medically significant health impact to collect additional information for completion of a VAERS report. Information on v-safe is available at https://www.cdc.gov/vsafe. Summary What is already known about this topic? On December 11, 2020, the Food and Drug Administration issued an Emergency Use Authorization for the Pfizer-BioNTech COVID-19 vaccine. What is added by this report? On December 12, 2020, after an explicit, evidence-based review of all available data, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥16 years for the prevention of COVID-19. What are the implications for public health practice? The recommendation for the Pfizer-BioNTech COVID-19 vaccine should be implemented in conjunction with ACIP’s interim recommendation for allocating initial supplies of COVID-19 vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of Diabetes by Race and Ethnicity in the United States, 2011-2016

              During 2011-2016, how prevalent was diabetes among major race/ethnicity groups and subgroups of Hispanic and non-Hispanic Asian adults in the United States? In this cross-sectional study that included 7575 adults, the age- and sex-adjusted diabetes prevalence was 12.1% for non-Hispanic white, 20.4% for non-Hispanic black, 22.1% for Hispanic, and 19.1% for non-Hispanic Asian groups. The diabetes prevalence also differed significantly among Hispanic or non-Hispanic Asian subgroups. In the United States in 2011-2016, the prevalence of diabetes varied across racial/ethnic groups. The prevalence of diabetes among Hispanic and Asian American subpopulations in the United States is unknown. To estimate racial/ethnic differences in the prevalence of diabetes among US adults 20 years or older by major race/ethnicity groups and selected Hispanic and non-Hispanic Asian subpopulations. National Health and Nutrition Examination Surveys, 2011-2016, cross-sectional samples representing the noninstitutionalized, civilian, US population. The sample included adults 20 years or older who had self-reported diagnosed diabetes during the interview or measurements of hemoglobin A 1c (HbA 1c ), fasting plasma glucose (FPG), and 2-hour plasma glucose (2hPG). Race/ethnicity groups: non-Hispanic white, non-Hispanic black, Hispanic and Hispanic subgroups (Mexican, Puerto Rican, Cuban/Dominican, Central American, and South American), non-Hispanic Asian and non-Hispanic Asian subgroups (East, South, and Southeast Asian), and non-Hispanic other. Diagnosed diabetes was based on self-reported prior diagnosis. Undiagnosed diabetes was defined as HbA 1c 6.5% or greater, FPG 126 mg/dL or greater, or 2hPG 200 mg/dL or greater in participants without diagnosed diabetes. Total diabetes was defined as diagnosed or undiagnosed diabetes. The study sample included 7575 US adults (mean age, 47.5 years; 52% women; 2866 [65%] non-Hispanic white, 1636 [11%] non-Hispanic black, 1952 [15%] Hispanic, 909 [6%] non-Hispanic Asian, and 212 [3%] non-Hispanic other). A total of 2266 individuals had diagnosed diabetes; 377 had undiagnosed diabetes. Weighted age- and sex-adjusted prevalence of total diabetes was 12.1% (95% CI, 11.0%-13.4%) for non-Hispanic white, 20.4% (95% CI, 18.8%-22.1%) for non-Hispanic black, 22.1% (95% CI, 19.6%-24.7%) for Hispanic, and 19.1% (95% CI, 16.0%-22.1%) for non-Hispanic Asian adults (overall P  < .001). Among Hispanic adults, the prevalence of total diabetes was 24.6% (95% CI, 21.6%-27.6%) for Mexican, 21.7% (95% CI, 14.6%-28.8%) for Puerto Rican, 20.5% (95% CI, 13.7%-27.3%) for Cuban/Dominican, 19.3% (95% CI, 12.4%-26.1%) for Central American, and 12.3% (95% CI, 8.5%-16.2%) for South American subgroups (overall P  < .001). Among non-Hispanic Asian adults, the prevalence of total diabetes was 14.0% (95% CI, 9.5%-18.4%) for East Asian, 23.3% (95% CI, 15.6%-30.9%) for South Asian, and 22.4% (95% CI, 15.9%-28.9%) for Southeast Asian subgroups (overall P  = .02). The prevalence of undiagnosed diabetes was 3.9% (95% CI, 3.0%-4.8%) for non-Hispanic white, 5.2% (95% CI, 3.9%-6.4%) for non-Hispanic black, 7.5% (95% CI, 5.9%-9.1%) for Hispanic, and 7.5% (95% CI, 4.9%-10.0%) for non-Hispanic Asian adults (overall P  < .001). In this nationally representative survey of US adults from 2011 to 2016, the prevalence of diabetes and undiagnosed diabetes varied by race/ethnicity and among subgroups identified within the Hispanic and non-Hispanic Asian populations. This national survey study uses National Health and Nutrition Examination Survey (NHANES) 2011-2016 data to estimate differences in the prevalence of diagnosed and undiagnosed diabetes among US adults 20 years or older by major race/ethnicity groups and selected Hispanic and non-Hispanic Asian subpopulations.
                Bookmark

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                opth
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove
                1177-5467
                1177-5483
                04 July 2022
                2022
                : 16
                : 2157-2166
                Affiliations
                [1 ]Department of Surgery, Division of Ophthalmology, Lahey Hospital & Medical Center, Beth Israel Lahey Health , Burlington, MA, 01805, USA
                [2 ]Department of Ophthalmology, Tufts University School of Medicine , Boston, MA, 02111, USA
                Author notes
                Correspondence: David J Ramsey, Department of Surgery, Division of Ophthalmology, Lahey Hospital & Medical Center , 1 Essex Center Drive, Peabody, MA, 01960, USA, Email David.J.Ramsey@lahey.org
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-5504-812X
                Article
                368972
                10.2147/OPTH.S368972
                9268229
                35814918
                8a4bdc46-e45d-4a4a-a815-14fe5ca0c64c
                © 2022 Ramsey et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 01 April 2022
                : 09 June 2022
                Page count
                Figures: 1, Tables: 9, References: 38, Pages: 10
                Funding
                Funded by: Lahey Hospital & Medical Center, Beth Israel Lahey Health;
                Funded by: Office of Medical Education, Lahey Hospital & Medical Center, Beth Israel Lahey Health;
                D.J.R.: Supported by the Harry N. Lee Family Chair in Innovation at the Lahey Hospital & Medical Center, Beth Israel Lahey Health. C.C.L.: Supported by a grant from Office of Medical Education, Lahey Hospital & Medical Center, Beth Israel Lahey Health.
                Categories
                Original Research

                Ophthalmology & Optometry
                telehealth,diabetes,diabetic retinopathy,quality improvement,medical care delivery

                Comments

                Comment on this article