2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Laser Surface Texturing for Biomedical Applications: A Review

      , , , ,
      Coatings
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For generating a texture or pattern on a work surface, one of the emerging processes is laser surface texturing (LST). It is an effective method for producing texture on a work surface. Literature shows that various lasers have been applied to generate textures on the surface of work materials. Recently, LST has shown tremendous potential in the field of biomedical applications. Applying the LST process, the efficacy of the biomaterial has been drastically improved. This paper presents an in-depth review of laser surface texturing for biomedical applications. The effect of LST on important biomaterial has been thoroughly studied; it was found that LST has extreme potential for surface modification of biomaterial and can be utilized for biomedical applications.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: not found
          • Article: not found

          Biomedical applications of titanium and its alloys

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biocompatibility of Advanced Manufactured Titanium Implants—A Review

            Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Review paper: surface modification for bioimplants: the role of laser surface engineering.

              Often hard implants undergo detachment from the host tissue due to inadequate biocompatibility and poor osteointegration. Changing surface chemistry and physical topography of the surface influences biocompatibility. At present, the understanding of biocompatibility of both virgin and modified surfaces of bioimplant materials is limited and a great deal of research is being dedicated to this aspect. In view of this, the current review casts new light on research related to the surface modification of biomaterials, especially materials for prosthetic applications. A brief overview of the major surface modification techniques has been presented, followed by an in-depth discussion on laser surface modifications that have been explored so far along with those that hold tremendous potential for bioimplant applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                COATED
                Coatings
                Coatings
                MDPI AG
                2079-6412
                February 2021
                January 22 2021
                : 11
                : 2
                : 124
                Article
                10.3390/coatings11020124
                8a53ee64-f4e4-454f-bc73-26b441facf61
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article