38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fast-spiking, parvalbumin + GABAergic interneurons: From cellular design to microcircuit function

      1 , 1 , 1
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Neuronal networks in the brain include glutamatergic principal neurons and GABAergic interneurons (GABA, γ-aminobutyric acid). The latter may be a minority cell type, but they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, higher brain function can be damaged and seizures may result. The fast-spiking, parvalbumin-positive interneurons (PV + interneurons) are readily characterized and, consequently, have been adopted as a research model for systematic and quantitative investigations. These cells contribute to feedback and feedforward inhibition and are critically involved in the generation of network oscillations. They can convert an excitatory input signal into an inhibitory output signal within a millisecond, but it is unclear how these signaling properties are implemented at the molecular and cellular levels, nor how PV + interneurons shape complex network functions.

          Advances

          Recent work sheds light on the subcellular signaling properties of PV + interneurons. PV + cells show a high degree of polarity. The weakly excitable dendrites allow PV + interneurons to sample activity in the surrounding network, whereas the highly excitable axons enable analog-to-digital conversion and fast propagation of the digital signal to a large number of target cells. Additionally, tight coupling of Ca 2+ channels and release sensors at GABAergic output synapses increases the efficacy and speed of the inhibitory output.

          Recent results also provide a better understanding of how PV + interneurons operate in neuronal networks. Not only are PV + interneurons involved in basic microcircuit functions, such as feedforward and feedback inhibition or gamma-frequency oscillations, but they also play a role in complex network operations, including expansion of dynamic activity range, pattern separation, modulation of place and grid field shapes, phase precession, and gain modulation of sensory responses. Thus, PV + interneurons are critically involved in advanced computations in microcircuits and neuronal networks.

          Outlook

          Parvalbumin-expressing interneurons may also play a key role in numerous brain diseases. These include epilepsy, but also complex psychiatric diseases such as schizophrenia. Thus, PV + interneurons may become important therapeutic targets in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will have a chance to successfully use PV + interneurons for therapeutic purposes.

          A central player in brain computation

          A small subgroup of nerve cells plays a central role in information processing in the brain. Hu et al. review our present knowledge about the specific makeup of these neurons. Specifically, the individual properties of the molecules, their distribution within the cell, and the anatomy of the cells themselves are described. This information helps to explain why these neurons are so important for the function of microcircuits in the brain, as well as the behavior of the organism. This detailed level of understanding will become relevant as these cells become future targets for the treatment of neurological diseases.

          Science , this issue p. [Related article:]10.1126/science.1255263

          Abstract

          The success story of fast-spiking, parvalbumin-positive (PV + ) GABAergic interneurons (GABA, γ-aminobutyric acid) in the mammalian central nervous system is noteworthy. In 1995, the properties of these interneurons were completely unknown. Twenty years later, thanks to the massive use of subcellular patch-clamp techniques, simultaneous multiple-cell recording, optogenetics, in vivo measurements, and computational approaches, our knowledge about PV + interneurons became more extensive than for several types of pyramidal neurons. These findings have implications beyond the “small world” of basic research on GABAergic cells. For example, the results provide a first proof of principle that neuroscientists might be able to close the gaps between the molecular, cellular, network, and behavioral levels, representing one of the main challenges at the present time. Furthermore, the results may form the basis for PV + interneurons as therapeutic targets for brain disease in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will be able to use PV + interneurons for therapeutic purposes.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Microstructure of a spatial map in the entorhinal cortex.

          The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Interneurons of the hippocampus.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.

              Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                August 2014
                August 2014
                : 345
                : 6196
                Affiliations
                [1 ]IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.
                Article
                10.1126/science.1255263
                25082707
                8a5a42b4-0e07-483c-b897-2aeb85e3c7e6
                © 2014
                History

                Comments

                Comment on this article