2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Viral-mediated transduction of auditory neurons with opsins for optical and hybrid activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optical stimulation is a paradigm-shifting approach to modulating neural activity that has the potential to overcome the issue of current spread that occurs with electrical stimulation by providing focused stimuli. But optical stimulation either requires high power infrared light or genetic modification of neurons to make them responsive to lower power visible light. This work examines optical activation of auditory neurons following optogenetic modification via AAV injection in two species (mouse and guinea pig). An Anc80 viral vector was used to express the channelrhodopsin variant ChR2-H134R fused to a fluorescent reporter gene under the control of the human synapsin-1 promoter. The AAV was administered directly to the cochlea (n = 33) or posterior semi-circular canal of C57BL/6 mice (n = 4) or to guinea pig cochleae (n = 6). Light (488 nm), electrical stimuli or the combination of these (hybrid stimulation) was delivered to the cochlea via a laser-coupled optical fibre and co-located platinum wire. Activation thresholds, spread of activation and stimulus interactions were obtained from multi-unit recordings from the central nucleus of the inferior colliculus of injected mice, as well as ChR2-H134R transgenic mice (n = 4). Expression of ChR2-H134R was examined by histology. In the mouse, transduction of auditory neurons by the Anc80 viral vector was most successful when injected at a neonatal age with up to 89% of neurons transduced. Auditory neuron transductions were not successful in guinea pigs. Inferior colliculus responses to optical stimuli were detected in a cochleotopic manner in all mice with ChR2-H134R expression. There was a significant correlation between lower activation thresholds in mice and higher proportions of transduced neurons. There was no difference in spread of activation between optical stimulation and electrical stimulation provided by the light/electrical delivery system used here (optical fibre with bonded 25 µm platinum/iridium wire). Hybrid stimulation, comprised of sub-threshold optical stimulation to ‘prime’ or raise the excitability of the neurons, lowered the threshold for electrical activation in most cases, but the impact on excitation width was more variable compared to transgenic mice. This study demonstrates the impact of opsin expression levels and expression pattern on optical and hybrid stimulation when considering optical or hybrid stimulation techniques for neuromodulation.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Optogenetics: 10 years of microbial opsins in neuroscience.

          Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005-2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.

            Speech recognition was measured as a function of spectral resolution (number of spectral channels) and speech-to-noise ratio in normal-hearing (NH) and cochlear-implant (CI) listeners. Vowel, consonant, word, and sentence recognition were measured in five normal-hearing listeners, ten listeners with the Nucleus-22 cochlear implant, and nine listeners with the Advanced Bionics Clarion cochlear implant. Recognition was measured as a function of the number of spectral channels (noise bands or electrodes) at signal-to-noise ratios of + 15, + 10, +5, 0 dB, and in quiet. Performance with three different speech processing strategies (SPEAK, CIS, and SAS) was similar across all conditions, and improved as the number of electrodes increased (up to seven or eight) for all conditions. For all noise levels, vowel and consonant recognition with the SPEAK speech processor did not improve with more than seven electrodes, while for normal-hearing listeners, performance continued to increase up to at least 20 channels. Speech recognition on more difficult speech materials (word and sentence recognition) showed a marginally significant increase in Nucleus-22 listeners from seven to ten electrodes. The average implant score on all processing strategies was poorer than scores of NH listeners with similar processing. However, the best CI scores were similar to the normal-hearing scores for that condition (up to seven channels). CI listeners with the highest performance level increased in performance as the number of electrodes increased up to seven, while CI listeners with low levels of speech recognition did not increase in performance as the number of electrodes was increased beyond four. These results quantify the effect of number of spectral channels on speech recognition in noise and demonstrate that most CI subjects are not able to fully utilize the spectral information provided by the number of electrodes used in their implant.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cochlear implants: a remarkable past and a brilliant future.

              The aims of this paper are to (i) provide a brief history of cochlear implants; (ii) present a status report on the current state of implant engineering and the levels of speech understanding enabled by that engineering; (iii) describe limitations of current signal processing strategies; and (iv) suggest new directions for research. With current technology the "average" implant patient, when listening to predictable conversations in quiet, is able to communicate with relative ease. However, in an environment typical of a workplace the average patient has a great deal of difficulty. Patients who are "above average" in terms of speech understanding, can achieve 100% correct scores on the most difficult tests of speech understanding in quiet but also have significant difficulty when signals are presented in noise. The major factors in these outcomes appear to be (i) a loss of low-frequency, fine structure information possibly due to the envelope extraction algorithms common to cochlear implant signal processing; (ii) a limitation in the number of effective channels of stimulation due to overlap in electric fields from electrodes; and (iii) central processing deficits, especially for patients with poor speech understanding. Two recent developments, bilateral implants and combined electric and acoustic stimulation, have promise to remediate some of the difficulties experienced by patients in noise and to reinstate low-frequency fine structure information. If other possibilities are realized, e.g., electrodes that emit drugs to inhibit cell death following trauma and to induce the growth of neurites toward electrodes, then the future is very bright indeed.
                Bookmark

                Author and article information

                Contributors
                rrichardson@bionicsinstitute.org
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 May 2021
                27 May 2021
                2021
                : 11
                : 11229
                Affiliations
                [1 ]GRID grid.431365.6, ISNI 0000 0004 0645 1953, The Bionics Institute, ; East Melbourne, VIC 3002 Australia
                [2 ]GRID grid.410670.4, ISNI 0000 0004 0625 8539, Department of Surgery (Otolaryngology), , University of Melbourne, The Royal Victorian Eye and Ear Hospital, ; East Melbourne, VIC 3002 Australia
                [3 ]GRID grid.1008.9, ISNI 0000 0001 2179 088X, Medical Bionics Department, , University of Melbourne, ; Parkville, VIC Australia
                [4 ]GRID grid.1027.4, ISNI 0000 0004 0409 2862, Faculty of Science, Engineering and Technology, , Swinburne University of Technology, ; Hawthorn, VIC 3122 Australia
                [5 ]GRID grid.1008.9, ISNI 0000 0001 2179 088X, Department of Biomedical Engineering, , University of Melbourne, ; Parkville, VIC Australia
                Article
                90764
                10.1038/s41598-021-90764-9
                8160204
                34045604
                8a7c68a0-7d1f-40f2-8982-49b1e2f1701e
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 December 2020
                : 13 May 2021
                Funding
                Funded by: Royal National Institute for Deaf People
                Funded by: FundRef http://dx.doi.org/10.13039/501100003354, Garnett Passe and Rodney Williams Memorial Foundation;
                Award ID: Conjoint Grant 2018
                Award ID: Conjoint Grant 2018
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                gene therapy,cochlea,biomedical engineering
                Uncategorized
                gene therapy, cochlea, biomedical engineering

                Comments

                Comment on this article