20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial-Epithelial Contact Is a Key Determinant of Host Innate Immune Responses to Enteropathogenic and Enteroaggregative Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Enteropathogenic (EPEC) and Enteroaggregative (EAEC) E. coli have similar, but distinct clinical symptoms and modes of pathogenesis. Nevertheless when they infect the gastrointestinal tract, it is thought that their flagellin causes IL-8 release leading to neutrophil recruitment and gastroenteritis. However, this may not be the whole story as the effect of bacterial adherence to IEC innate response(s) remains unclear. Therefore, we have characterized which bacterial motifs contribute to the innate epithelial response to EPEC and EAEC, using a range of EPEC and EAEC isogenic mutant strains.

          Methodology

          Caco-2 and HEp-2 cell lines were exposed to prototypical EPEC strain E2348/69 or EAEC strain O42, in addition to a range of isogenic mutant strains. E69 [LPS, non-motile, non-adherent, type three secretion system (TTSS) negative, signalling negative] or O42 [non-motile, non-adherent]. IL-8 and CCL20 protein secretion was measured. Bacterial surface structures were assessed by negative staining Transmission Electron Microscopy. The Fluorescent-actin staining test was carried out to determine bacterial adherence.

          Results

          Previous studies have reported a balance between the host pro-inflammatory response and microbial suppression of this response. In our system an overall balance towards the host pro-inflammatory response is seen with the E69 WT and to a greater extent O42 WT, which is in fit with clinical symptoms. On removal of the external EPEC structures flagella, LPS, BFP, EspA and EspC; and EAEC flagella and AAF, the host inflammatory response is reduced. However, removal of E69 lymphostatin increases the host inflammatory response suggesting involvement in the bacterial mediated anti-inflammatory response.

          Conclusion

          Epithelial responses were due to combinations of bacterial agonists, with host-bacterial contact a key determinant of these innate responses. Host epithelial recognition was offset by the microbe's ability to down-regulate the inflammatory response. Understanding the complexity of this host-microbial balance will contribute to improved vaccine design for infectious gastroenteritis.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics.

          The human intestinal Caco-2 cell line has been extensively used over the last twenty years as a model of the intestinal barrier. The parental cell line, originally obtained from a human colon adenocarcinoma, undergoes in culture a process of spontaneous differentiation that leads to the formation of a monolayer of cells, expressing several morphological and functional characteristics of the mature enterocyte. Culture-related conditions were shown to influence the expression of these characteristics, in part due to the intrinsic heterogeneity of the parental cell line, leading to selection of sub-populations of cells becoming prominent in the culture. In addition, several clonal cell lines have been isolated from the parental line, exhibiting in general a more homogeneous expression of differentiation traits, while not always expressing all characteristics of the parental line. Culture-related conditions, as well as the different Caco-2 cell lines utilized in different laboratories, often make it extremely difficult to compare results in the literature. This review is aimed at summarizing recent, or previously unreviewed, data from the literature on the effects of culture-related factors and the influence of line sub-types (parental vs. different clonal lines) on the expression of differentiation traits important for the use of Caco-2 cells as a model of the absorptive and defensive properties of the intestinal mucosa. Since the use of Caco-2 cells has grown exponentially in recent years, it is particularly important to highlight these methodological aspects in order to promote the standardization and optimisation of this intestinal model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innate immune sensing and its roots: the story of endotoxin.

            How does the host sense pathogens? Our present concepts grew directly from longstanding efforts to understand infectious disease: how microbes harm the host, what molecules are sensed and, ultimately, the nature of the receptors that the host uses. The discovery of the host sensors--the Toll-like receptors--was rooted in chemical, biological and genetic analyses that centred on a bacterial poison, termed endotoxin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dendritic cells in intestinal immune regulation.

              A breakdown in intestinal homeostasis can result in chronic inflammatory diseases of the gut including inflammatory bowel disease, coeliac disease and allergy. Dendritic cells, through their ability to orchestrate protective immunity and immune tolerance in the host, have a key role in shaping the intestinal immune response. The mechanisms through which dendritic cells can respond to environmental cues in the intestine and select appropriate immune responses have until recently been poorly understood. Here, we review recent work that is beginning to identify factors responsible for intestinal conditioning of dendritic-cell function and the subsequent decision between tolerance and immunity in the intestine.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                28 October 2011
                : 6
                : 10
                : e27030
                Affiliations
                [1 ]Centre for Paediatric Gastroenterology, Royal Free Hospital, London, United Kingdom
                [2 ]Infectious Diseases and Microbiology, Institute of Child health, London, United Kingdom
                [3 ]Division of Metabolic and Vascular Health, Warwick Medical School, Coventry, United Kingdom
                National Institute of Environmental Health Sciences, United States of America
                Author notes

                Conceived and designed the experiments: ADP SHM LAE. Performed the experiments: LAE. Analyzed the data: LAE. Contributed reagents/materials/analysis tools: ADP SHM. Wrote the paper: LAE. Intellectual content: NJK MBE.

                Article
                PONE-D-11-14322
                10.1371/journal.pone.0027030
                3203933
                22046438
                8a93d0b5-1061-4d7c-87f1-454ecc138b16
                Edwards et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 July 2011
                : 9 October 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Immunology
                Immune System
                Cytokines
                Immunity
                Immune Suppression
                Immunity to Infections
                Immunizations
                Innate Immunity
                Immune Response
                Microbiology
                Bacterial Pathogens
                Escherichia Coli
                Immunity
                Innate Immunity
                Host-Pathogen Interaction
                Microbial Pathogens
                Medicine
                Gastroenterology and Hepatology
                Bacterial and Foodborne Illness
                Gastrointestinal Infections
                Infectious Diseases
                Bacterial Diseases
                Escherichia Coli

                Uncategorized
                Uncategorized

                Comments

                Comment on this article