0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hierarchical carbon fiber reinforced SiC/C aerogels with efficient electromagnetic wave absorption properties

      , ,
      Composites Part B: Engineering
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Interpretation of Raman spectra of disordered and amorphous carbon

          Physical Review B, 61(20), 14095-14107
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption.

            The synthesis of CoNi@SiO2 @TiO2 core-shell and CoNi@Air@TiO2 yolk-shell microspheres is reported for the first time. Owing to the magnetic-dielectric synergistic effect, the obtained CoNi@SiO2 @TiO2 microspheres exhibit outstanding microwave absorption performance with a maximum reflection loss of -58.2 dB and wide bandwidth of 8.1 GHz (8.0-16.1 GHz, < -10 dB).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam.

              The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network.
                Bookmark

                Author and article information

                Journal
                Composites Part B: Engineering
                Composites Part B: Engineering
                Elsevier BV
                13598368
                January 2023
                January 2023
                : 248
                : 110376
                Article
                10.1016/j.compositesb.2022.110376
                8a9f8315-7017-448d-a911-57a89d7d84cb
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article