35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A phase II, open-label, multicentre study to evaluate the immunogenicity and safety of an adjuvanted prepandemic (H5N1) influenza vaccine in healthy Japanese adults

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Promising clinical data and significant antigen-sparing have been demonstrated for a pandemic H5N1 influenza split-virion vaccine adjuvanted with AS03 A, an α-tocopherol-containing oil-in-water emulsion-based Adjuvant System. Although studies using this formulation have been reported, there have been no data for Japanese populations. This study therefore aimed to assess the immunogenicity and tolerability of a prepandemic (H5N1) influenza vaccine adjuvanted with AS03 A in Japanese adults.

          Methods

          This open-label, single-group study was conducted at two centres in Japan in healthy Japanese males and females aged 20-64 years (n = 100). Subjects received two doses of vaccine, containing 3.75 μg haemagglutinin of the A/Indonesia/5/2005-like IBCDC-RG2 Clade 2.1 (H5N1) strain adjuvanted with AS03 A, 21 days apart. The primary endpoint evaluated the humoral immune response in terms of H5N1 haemagglutination inhibition (HI) antibody titres against the vaccine strain (Clade 2.1) 21 days after the second dose. Ninety five percent confidence intervals for geometric mean titres, seroprotection, seroconversion and seropositivity rates were calculated. Secondary and exploratory endpoints included the assessment of the humoral response in terms of neutralising antibody titres, the response against additional H5N1 strains (Clade 1 and Clade 2.2), as well as the evaluation of safety and reactogenicity.

          Results

          Robust immune responses were elicited after two doses of the prepandemic influenza vaccine adjuvanted with AS03 A. Overall, vaccine HI seroconversion rates and seroprotection rates were 91% 21 days after the second vaccination. This fulfilled all regulatory acceptance criteria for the vaccine-homologous HI antibody level. A substantial cross-reactive humoral immune response was also observed against the virus strains A/turkey/Turkey/1/2005 (Clade 2.2) and A/Vietnam/1194/2004 (Clade 1) after the second vaccine administration. A marked post-vaccination response in terms of neutralising antibody titres was demonstrated and persistence of the immune response was observed 6 months after the first dose. The vaccine was generally well tolerated and there were no serious adverse events reported.

          Conclusions

          The H5N1 candidate vaccine adjuvanted with AS03 A elicited a strong and persistent immune response against the vaccine strain A/Indonesia/5/2005 in Japanese adults. Vaccination with this formulation demonstrated a clinically acceptable reactogenicity profile and did not raise any safety concerns in this population.

          Trial registration

          Clinicaltrials.gov NCT00742885

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Probable person-to-person transmission of avian influenza A (H5N1).

          During 2004, a highly pathogenic avian influenza A (H5N1) virus caused poultry disease in eight Asian countries and infected at least 44 persons, killing 32; most of these persons had had close contact with poultry. No evidence of efficient person-to-person transmission has yet been reported. We investigated possible person-to-person transmission in a family cluster of the disease in Thailand. For each of the three involved patients, we reviewed the circumstances and timing of exposures to poultry and to other ill persons. Field teams isolated and treated the surviving patient, instituted active surveillance for disease and prophylaxis among exposed contacts, and culled the remaining poultry surrounding the affected village. Specimens from family members were tested by viral culture, microneutralization serologic analysis, immunohistochemical assay, reverse-transcriptase-polymerase-chain-reaction (RT-PCR) analysis, and genetic sequencing. The index patient became ill three to four days after her last exposure to dying household chickens. Her mother came from a distant city to care for her in the hospital, had no recognized exposure to poultry, and died from pneumonia after providing 16 to 18 hours of unprotected nursing care. The aunt also provided unprotected nursing care; she had fever five days after the mother first had fever, followed by pneumonia seven days later. Autopsy tissue from the mother and nasopharyngeal and throat swabs from the aunt were positive for influenza A (H5N1) by RT-PCR. No additional chains of transmission were identified, and sequencing of the viral genes identified no change in the receptor-binding site of hemagglutinin or other key features of the virus. The sequences of all eight viral gene segments clustered closely with other H5N1 sequences from recent avian isolates in Thailand. Disease in the mother and aunt probably resulted from person-to-person transmission of this lethal avian influenzavirus during unprotected exposure to the critically ill index patient. Copyright 2005 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays.

            From May to December 1997, 18 cases of mild to severe respiratory illness caused by avian influenza A (H5N1) viruses were identified in Hong Kong. The emergence of an avian virus in the human population prompted an epidemiological investigation to determine the extent of human-to-human transmission of the virus and risk factors associated with infection. The hemagglutination inhibition (HI) assay, the standard method for serologic detection of influenza virus infection in humans, has been shown to be less sensitive for the detection of antibodies induced by avian influenza viruses. Therefore, we developed a more sensitive microneutralization assay to detect antibodies to avian influenza in humans. Direct comparison of an HI assay and the microneutralization assay demonstrated that the latter was substantially more sensitive in detecting human antibodies to H5N1 virus in infected individuals. An H5-specific indirect enzyme-linked immunosorbent assay (ELISA) was also established to test children's sera. The sensitivity and specificity of the microneutralization assay were compared with those of an H5-specific indirect ELISA. When combined with a confirmatory H5-specific Western blot test, the specificities of both assays were improved. Maximum sensitivity (80%) and specificity (96%) for the detection of anti-H5 antibody in adults aged 18 to 59 years were achieved by using the microneutralization assay combined with Western blotting. Maximum sensitivity (100%) and specificity (100%) in detecting anti-H5 antibody in sera obtained from children less than 15 years of age were achieved by using ELISA combined with Western blotting. This new test algorithm is being used for the seroepidemiologic investigations of the avian H5N1 influenza outbreak.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine.

              The target of neutralizing antibodies that protect against influenza virus infection is the viral protein HA. Genetic and antigenic variation in HA has been used to classify influenza viruses into subtypes (H1-H16). The neutralizing antibody response to influenza virus is thought to be specific for a few antigenically related isolates within a given subtype. However, while heterosubtypic antibodies capable of neutralizing multiple influenza virus subtypes have been recently isolated from phage display libraries, it is not known whether such antibodies are produced in the course of an immune response to influenza virus infection or vaccine. Here we report that, following vaccination with seasonal influenza vaccine containing H1 and H3 influenza virus subtypes, some individuals produce antibodies that cross-react with H5 HA. By immortalizing IgG-expressing B cells from 4 individuals, we isolated 20 heterosubtypic mAbs that bound and neutralized viruses belonging to several HA subtypes (H1, H2, H5, H6, and H9), including the pandemic A/California/07/09 H1N1 isolate. The mAbs used different VH genes and carried a high frequency of somatic mutations. With the exception of a mAb that bound to the HA globular head, all heterosubtypic mAbs bound to acid-sensitive epitopes in the HA stem region. Four mAbs were evaluated in vivo and protected mice from challenge with influenza viruses representative of different subtypes. These findings reveal that seasonal influenza vaccination can induce polyclonal heterosubtypic neutralizing antibodies that cross-react with the swine-origin pandemic H1N1 influenza virus and with the highly pathogenic H5N1 virus.
                Bookmark

                Author and article information

                Journal
                BMC Infect Dis
                BMC Infectious Diseases
                BioMed Central
                1471-2334
                2010
                25 November 2010
                : 10
                : 338
                Affiliations
                [1 ]National Hospital Organization Tokyo National Hospital, 3-1-1, Takeoka, Kiyose-city, Tokyo 204-8585, Japan
                [2 ]Hara-doi Hospital, 6-40-8, Aoba, Higashi-ku, Fukuoka 813-8588, Japan
                [3 ]Clinical Development Vaccines, GlaxoSmithKline Japan
                [4 ]Global Clinical Research & Development, GlaxoSmithKline Biologicals, Wavre, Belgium
                Article
                1471-2334-10-338
                10.1186/1471-2334-10-338
                3004909
                21108818
                8aa20da2-756c-48df-94e9-5162fcd0a151
                Copyright ©2010 Nagai et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 June 2010
                : 25 November 2010
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article