48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Adaptive and Innate Immunity in Type 2 Diabetes Mellitus

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After the recognition of the essential role of the immune system in the progression of type 2 diabetes mellitus, more studies are focused on the effects produced by the abnormal differentiation of components of the immune system. In patients suffering from obesity or T2DM, there were alterations in proliferation of T cells and macrophages, and impairment in function of NK cells and B cells, which represented abnormal innate and adaptive immunity. The abnormality of either innate immunity, adaptive immunity, or both was involved and interacted with each other during the progression of T2DM. Although previous studies have revealed the functional involvement of T cells in T2DM, and the regulation of metabolism by the innate or adaptive immune system during the pathogenesis of T2DM, there has been a lack of literature reviewing the relevant role of adaptive and innate immunity in the progression of T2DM. Here, we will review their relevant roles, aiming to provide new thought for the development of immunotherapy in T2DM.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance.

          Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages.

            Adipose tissue macrophage (ATM)-driven inflammation plays a key role in insulin resistance; however, factors activating ATMs are poorly understood. Using a proteomics approach, we show that markers of classical activation are absent on ATMs from obese humans but are readily detectable on airway macrophages of patients with cystic fibrosis, a disease associated with chronic bacterial infection. Moreover, treating macrophages with glucose, insulin, and palmitate-conditions characteristic of the metabolic syndrome-produces a "metabolically activated" phenotype distinct from classical activation. Markers of metabolic activation are expressed by proinflammatory ATMs in obese humans/mice and are positively correlated with adiposity. Metabolic activation is driven by independent proinflammatory and anti-inflammatory pathways, which regulate balance between cytokine production and lipid metabolism. We identify PPARγ and p62/SQSTM1 as two key proteins that promote lipid metabolism and limit inflammation in metabolically activated macrophages. Collectively, our data provide important mechanistic insights into pathways that drive the metabolic-disease-specific phenotype of macrophages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages.

              CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are potent suppressors of the adaptive immune system, but their effects on innate immune cells are less well known. Here we demonstrate a previously uncharacterized function of Tregs, namely their ability to steer monocyte differentiation toward alternatively activated macrophages (AAM). AAM are cells with strong antiinflammatory potential involved in immune regulation, tissue remodeling, parasite killing, and tumor promotion. We show that, after coculture with Tregs, monocytes/macrophages display typical features of AAM, including up-regulated expression of CD206 (macrophage mannose receptor) and CD163 (hemoglobin scavenger receptor), an increased production of CCL18, and an enhanced phagocytic capacity. In addition, the monocytes/macrophages have reduced expression of HLA-DR and a strongly reduced capacity to respond to LPS in terms of proinflammatory mediator production (IL-1beta, IL-6, IL-8, MIP-1alpha, TNF-alpha), NFkappaB activation, and tyrosine phosphorylation. Mechanistic studies reveal that CD4(+)CD25(+)CD127(low)Foxp3(+) Tregs produce IL-10, IL-4, and IL-13 and that these cytokines are the critical factors involved in the suppression of the proinflammatory cytokine response. In contrast, the Treg-mediated induction of CD206 is entirely cytokine-independent, whereas the up-regulation of CD163, CCL18, and phagocytosis are (partly) dependent on IL-10 but not on IL-4/IL-13. Together these data demonstrate a previously unrecognized function of CD4(+)CD25(+)Foxp3(+) Tregs, namely their ability to induce alternative activation of monocytes/macrophages. Moreover, the data suggest that the Treg-mediated induction of AAM partly involves a novel, cytokine-independent pathway.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2018
                8 November 2018
                : 2018
                : 7457269
                Affiliations
                1Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province, China
                2Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
                3Department of Respiration, The First Hospital of Jilin University, Changchun, Jilin Province, China
                Author notes

                Guest Editor: Aziz Hichami

                Author information
                http://orcid.org/0000-0002-3158-1616
                http://orcid.org/0000-0002-1684-5302
                http://orcid.org/0000-0001-8107-616X
                Article
                10.1155/2018/7457269
                6250017
                30533447
                8b68ac74-02c3-4cc4-a33d-780692a1da3f
                Copyright © 2018 Tong Zhou et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 June 2018
                : 10 September 2018
                Funding
                Funded by: Laboratory of Endocrinology and Metabolism Diseases
                Award ID: 3J117C253428
                Funded by: Jilin University
                Award ID: 2017029
                Categories
                Review Article

                Comments

                Comment on this article