0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of calcium in the secretion of leptin from white adipocytes

      ,
      American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanism by which calcium regulates leptin secretion was studied in adipocytes isolated from rat white adipose tissue. Incubation of adipocytes in a medium containing glucose, but no calcium, markedly inhibited insulin-stimulated leptin secretion (ISLS) and synthesis, without affecting basal leptin secretion or lipolysis. However, when pyruvate was used as a substrate, ISLS was insensitive to the absence of calcium. Likewise, the stimulatory effects of insulin were completely prevented by phloretin, cytochalasin B, and W-13 (3 agents that interfere with early steps of glucose metabolism) in the presence of glucose, but not in the presence of pyruvate. Thus calcium appears to be specifically required for glucose utilization. On the other hand, 45Ca uptake and leptin secretion were not affected by insulin or by inhibitors of L-type calcium channels. However, agents increasing plasma membrane permeability to calcium (high calcium concentrations, A-23187, and ATP) increased 45Ca uptake and concomitantly inhibited ISLS. Similarly, release of endogenous calcium stores by thapsigargin inhibited ISLS in a dose-dependent manner. ATP, A-23187, calcium, and thapsigargin inhibited ISLS, even in the presence of pyruvate. These results show that 1) extracellular calcium is necessary for ISLS, mainly by affecting glucose uptake, 2) insulin does not affect extracellular calcium uptake, and 3) increasing cytosolic calcium by stimulating its uptake or its release from endogenous stores inhibits ISLS at a level independent of glucose metabolism. Thus calcium regulates leptin secretion from adipocytes in a manner that is markedly different from its role in the exocytosis of many other polypeptidic hormones.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Positional cloning of the mouse obese gene and its human homologue.

          The mechanisms that balance food intake and energy expenditure determine who will be obese and who will be lean. One of the molecules that regulates energy balance in the mouse is the obese (ob) gene. Mutation of ob results in profound obesity and type II diabetes as part of a syndrome that resembles morbid obesity in humans. The ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leptin and the regulation of body weight in mammals.

            The assimilation, storage and use of energy from nutrients constitute a homeostatic system that is essential for life. In vertebrates, the ability to store sufficient quantities of energy-dense triglyceride in adipose tissue allows survival during the frequent periods of food deprivation encountered during evolution. However, the presence of excess adipose tissue can be maladaptive. A complex physiological system has evolved to regulate fuel stores and energy balance at an optimum level. Leptin, a hormone secreted by adipose tissue, and its receptor are integral components of this system. Leptin also signals nutritional status to several other physiological systems and modulates their function. Here we review the role of leptin in the control of body weight and its relevance to the pathogenesis of obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps.

              The role of ATP-dependent calcium uptake into intracellular storage compartments is an essential feature of hormonally induced calcium signaling. Thapsigargin, a non-phorboid tumor promoter, increasingly is being used to manipulate calcium stores because it induces a hormone-like elevation of cytosolic calcium. It has been suggested that thapsigargin acts through inhibition of the endoplasmic reticulum calcium pump. We have directly tested the specificity of thapsigargin on all of the known intracellular-type calcium pumps (referred to as the sarcoplasmic or endoplasmic reticulum Ca-ATPase family (SERCA]. Full-length cDNA clones encoding SERCA1, SERCA2a, SERCA2b, and SERCA3 enzymes were expressed in COS cells, and both calcium uptake and calcium-dependent ATPase activity were assayed in microsomes isolated from them. Thapsigargin inhibited all of the SERCA isozymes with equal potency. Furthermore, similar doses of thapsigargin abolished the calcium uptake and ATPase activity of sarcoplasmic reticulum isolated from fast twitch and cardiac muscle but had no influence on either the plasma membrane Ca-ATPase or Na,K-ATPase. The interaction of thapsigargin with the SERCA isoforms is rapid, stoichiometric, and essentially irreversible. These properties demonstrate that thapsigargin interacts with a recognition site found in, and only in, all members of the endoplasmic and sarcoplasmic reticulum calcium pump family.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
                American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
                American Physiological Society
                0363-6119
                1522-1490
                December 2004
                December 2004
                : 287
                : 6
                : R1380-R1386
                Article
                10.1152/ajpregu.00368.2004
                8b7ce2c1-49a2-4e48-bf7d-2373fb5d6631
                © 2004
                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article