6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fitness and eco-physiological response of a chytrid fungal parasite infecting planktonic cyanobacteria to thermal and host genotype variation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding how individual parasite traits contribute to overall fitness, and how they are modulated by both external and host environment, is crucial for predicting disease outcome. Fungal (chytrid) parasites of phytoplankton are important yet poorly studied pathogens with the potential to modulate the abundance and composition of phytoplankton communities and to drive their evolution. Here, we studied life-history traits of a chytrid parasite infecting the planktonic, bloom-forming cyanobacterium Planktothrix spp. under host genotype and thermal variation. When expressing parasite fitness in terms of transmission success, disease outcome was largely modulated by temperature alone. Yet, a closer examination of individual parasite traits linked to different infection phases, such as (i) the establishment of the infection (i.e. intensity of infection) and (ii) the exploitation of host resources (i.e. size of reproductive structures and propagules), revealed differential host genotype and temperature × host genotype modulation, respectively. This illustrates how parasite fitness results from the interplay of individual parasite traits that are differentially controlled by host and external environment, and stresses the importance of combining multiple traits to gain insights into underlying infection mechanisms.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Population biology of infectious diseases: Part I.

          If the host population is taken to be a dynamic variable (rather than constant, as conventionally assumed), a wider understanding of the population biology of infectious diseases emerges. In this first part of a two-part article, mathematical models are developed, shown to fit data from laboratory experiments, and used to explore the evolutionary relations among transmission parameters. In the second part of the article, to be published in next week's issue, the models are extended to include indirectly transmitted infections, and the general implications for infectious diseases are considered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamics of an emerging disease drive large-scale amphibian population extinctions.

            Epidemiological theory generally suggests that pathogens will not cause host extinctions because the pathogen should fade out when the host population is driven below some threshold density. An emerging infectious disease, chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is directly linked to the recent extinction or serious decline of hundreds of amphibian species. Despite continued spread of this pathogen into uninfected areas, the dynamics of the host-pathogen interaction remain unknown. We use fine-scale spatiotemporal data to describe (i) the invasion and spread of Bd through three lake basins, each containing multiple populations of the mountain yellow-legged frog, and (ii) the accompanying host-pathogen dynamics. Despite intensive sampling, Bd was not detected on frogs in study basins until just before epidemics began. Following Bd arrival in a basin, the disease spread to neighboring populations at approximately 700 m/yr in a wave-like pattern until all populations were infected. Within a population, infection prevalence rapidly reached 100% and infection intensity on individual frogs increased in parallel. Frog mass mortality began only when infection intensity reached a critical threshold and repeatedly led to extinction of populations. Our results indicate that the high growth rate and virulence of Bd allow the near-simultaneous infection and buildup of high infection intensities in all host individuals; subsequent host population crashes therefore occur before Bd is limited by density-dependent factors. Preventing infection intensities in host populations from reaching this threshold could provide an effective strategy to avoid the extinction of susceptible amphibian species in the wild.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ocean Science: The power of plankton.

                Bookmark

                Author and article information

                Journal
                applab
                Parasitology
                Parasitology
                Cambridge University Press (CUP)
                0031-1820
                1469-8161
                February 26 2018
                : 1-8
                Article
                10.1017/S0031182018000215
                8c1ba856-535a-4ff7-a83e-1a2eef321827
                © 2018
                History

                Comments

                Comment on this article