47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Desmoplastic Small Round Cell Tumor: Current Management and Recent Findings

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Desmoplastic small round cell tumor (DSRCT) is a rare and highly aggressive mesenchymal tumor that develops in the abdominal cavity of young men adults. Patients typically present with symptoms of abdominal sarcomatosis. Diagnosis is based on histological analysis of biopsies which typically show small round blue cells in nests separated by an abundant desmoplastic stroma. DSRCT is associated with a unique chromosomal translocation t(11:22) (p 13; q 12) that involves the EWSR1 and WT1 genes. The prognosis is particularly poor; median survival ranges from 17 to 25 months, largely due to the presentation of the majority of patients with metastatic disease. Management of DSRCT remains challenging and current schemes lack a significant cure rate despite the use of aggressive treatments such as polychemotherapy, debulking surgery and whole abdominal radiation. Several methods are being evaluated to improve survival: addition of chemotherapy and targeted therapies to standard neoadjuvant protocol, completion of surgical resection with HIPEC, postoperative IMRT, treatment of hepatic metastases with [ 90Y]Yttrium microsphere liver embolization.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Results of multimodal treatment for desmoplastic small round cell tumors.

          Desmoplastic small round cell tumors (DSRCTs) are rare aggressive neoplasms that frequently present with large symptomatic intraabdominal masses. We examined the effects of multimodal therapy including induction chemotherapy, aggressive surgical debulking, and external beam radiotherapy on patients with DSRCT. Institutional Review Board permission was obtained. Sixty-six patients were diagnosed by histology, immunohistochemistry, and or cytogenetics as having DSRCT at our institution from July 1, 1972, to July 1, 2003. Data were collected on patient demographics, presenting symptoms, tumor location and extent, treatment regimen, and overall survival. A majority of patients were male (91%), Caucasian (85%), and with a median age of 19 (7-58) years old at diagnosis. The most common presenting complaint was an intraabdominal mass (64%). In 63 patients (96%), the primary tumor was located in the abdomen or pelvis. Thirty-three (50%) had positive lymph nodes and 27 (41%) had distant parenchymal metastases at diagnosis. Overall, 3- and 5-year survivals were 44% and 15%, respectively. Twenty-nine of these patients (44%) underwent induction chemotherapy (P6), surgical debulking, and radiotherapy. Three-year survival was 55% in those receiving chemotherapy, surgery, and radiotherapy vs 27% when all 3 modalities were not used (P < .02). Gross tumor resection was highly significant in prolonging overall survival; 3-year survival was 58% in patients treated with gross tumor resection compared to no survivors past 3 years in the nonresection cohort (P < .00001). Ten patients (15%) have no evidence of disease with a median follow-up of 2.4 years (range, 0.4-11.2 years). Multimodal therapy results in improved survival in patients with DSRCT. Aggressive surgical resection of these extensive intraabdominal neoplasms correlates with improved patient outcome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Desmoplastic small round-cell tumor: prolonged progression-free survival with aggressive multimodality therapy.

            To test intensive alkylator-based therapy in desmoplastic small round-cell tumor (DSRCT). Patients received the P6 protocol, which has seven courses of chemotherapy. Courses 1, 2, 3, and 6 included cyclophosphamide 4,200 mg/m2, doxorubicin 75 mg/m2, and vincristine (HD-CAV). Courses 4, 5, and 7 consisted of ifosfamide 9 g/m2 and etoposide 500 mg/m2 for previously untreated patients, or ifosfamide 12 g/m2 and etoposide 1,000 mg/m2 for previously treated patients. Courses started after neutrophil counts reached 500/microL and platelet counts reached 100,000/microL. Tumor resection was attempted. Post-P6 treatment options included radiotherapy and a myeloablative regimen of thiotepa (900 mg/m2) plus carboplatin (1,500 mg/m2), with stem-cell rescue. Ten previously untreated and two previously treated patients have completed therapy. The male-to-female ratio was 11:1. Ages were 7 to 22 years (median, 14). The largest masses were infradiaphragmatic (n = 11) or intrathoracic (n = 1). Other findings included serosal implants (n = 11), regional lymph node invasion (n = 8), ascites or pleural effusion (n = 7), and metastases to liver (n = 5), lungs (n = 4), distant lymph nodes (n = 3), spleen (n = 2), and skeleton (n = 2). Tumors uniformly responded to HD-CAV, but there were no complete pathologic responses. One patient died at 1 month from tumor-related Budd-Chiari syndrome. Of seven patients who achieved a complete remission (CR), five remain in CR 9, 12, 13, 33, and 38 months from the start of P6, one patient died of infection at 12 months (autopsy-confirmed CR), and one patient relapsed 4 months off therapy. Of four patients who achieved a partial remission (PR), one remains progression-free at 34 months and three developed progressive disease. Five patients received local radiotherapy: three were not assessable for response, but in two patients, antitumor effect was evident. Four patients received thiotepa/carboplatin: two were in CR and remain so, and two patients had measurable disease that did not respond. For control of DSRCT, our experience supports intensive use of HD-CAV, aggressive surgery to resect visible disease, radiotherapy to high-risk sites, and myeloablative chemotherapy with stem-cell rescue in selected cases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants.

              Intense investigation has reshaped concepts about undifferentiated tumors occurring in young people (small round-cell tumors). Tumors associated with t(11;22)(p13;q12) and descriptively designated desmoplastic small round-cell tumor (DSRCT) are a distinctive, rare, poorly understood member of this family. We reviewed 109 cases of DSRCT to further characterize this entity better. Clinical information and histology were reviewed. Immunohistochemistry and immunoblotting were performed using standard techniques. Chimeric EWS-WT1 RNA and DNA were detected by polymerase chain reaction (PCR) and genomic translocation breakpoints mapped in a subset of cases. There were 90 males and 19 females from 6 to 49 years of age (mean, 22 years). A total of 103 had tumor in the abdominal cavity, four in the thoracic region, one in the posterior cranial fossa, and one in the hand. Typical histologic and immunohistochemical features were usually evident in well-sampled tumors, but variations in cellularity, stromal components, cytology, architecture, and immunoreactivity occurred. Tumor cells were usually reactive with antibodies to keratin (67 of 78 cases, 86%), epithelial membrane antigen (50 of 54, 93%), vimentin (64 of 66, 97%), desmin (70 of 78, 90%), neuron-specific enolase (60 of 74, 81%), and the EWS-WT1 chimeric protein (25 of 27, 93%); typically nonreactive for muscle common actin (one of 58, 2%), myogenin (zero of eight, 0%), and chromogranin (one of 46, 2%); and variably reactive for MIC2 (nine of 47, 20%) and p53 (five of 17 with > 20% tumor cells reactive). Functional EWS-WT1 gene fusion was evident in 25 of 26 cases with genomic breakpoints in WT1 intron 7, and EWS introns 7, 8, and 9. Prognosis in general is poor, but tumors are responsive to aggressive therapy. This large review identifies a greater degree of clinical, pathologic, and molecular variation than originally appreciated for tumors associated with t(11;22)(p13;q12). Translocation and functional fusion of the EWS and WT1 genes appears to be a consistent feature of this unique tumor.
                Bookmark

                Author and article information

                Journal
                Sarcoma
                Sarcoma
                SRCM
                Sarcoma
                Hindawi Publishing Corporation
                1357-714X
                1369-1643
                2012
                29 March 2012
                : 2012
                : 714986
                Affiliations
                1Department of Immunity, Virus and Microenvironnement, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052—CNRS 5286, Leon Berard Cancer Center, 28 Rue Laennec, 69008 Lyon, France
                2Medical Oncology Department, Leon Berard Cancer Center, 28 Rue Laennec, 69008 Lyon, France
                Author notes

                Academic Editor: Isabelle Ray-Coquard

                Article
                10.1155/2012/714986
                3329898
                22550424
                8c9240aa-bd32-4482-9f94-e97e0155e8e4
                Copyright © 2012 Armelle Dufresne et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 December 2011
                : 22 January 2012
                Categories
                Review Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article