5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of miR-34b/c rs4938723 and TP53 Arg72Pro Polymorphisms with Neuroblastoma Susceptibility: Evidence from Seven Centers 1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroblastoma is a pediatric malignancy arising from the developing peripheral nervous system. p53 and downstream effector miR-34b/c have critical tumor suppressing functions. TP53 Arg72Pro (rs1042522 C > G) and miR-34b/c rs4938723 (T > C) polymorphisms have been known to modify cancer susceptibility. This study was performed to validate the association of these two polymorphisms and neuroblastoma risk with 819 cases and 1780 controls. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were used to assess the strength of the associations. False positive report possibility analysis was adopted to dissect out real significant associations from chance findings. We found that both TP53 Arg72Pro (CG/GG vs. CC: adjusted OR = 0.82, 95% CI = 0.69-0.98) and miR-34b/c rs4938723 (TC/CC vs. TT: adjusted OR = 0.64, 95% CI = 0.54-0.75) were associated with decreased neuroblastoma susceptibility. Stratify analyses further confirmed the protective effect among some subgroups. Moreover, subjects with variant alleles of both polymorphisms were associated with more significantly decreased neuroblastoma risk (CG/TC vs. CC/TT: adjusted OR = 0.38, 95% CI = 0.28-0.50; GG/TC vs. CC/TT: adjusted OR = 0.43, 95% CI = 0.30-0.63) than those carrying variant allele of either one polymorphism (CC/TC vs. CC/TT: adjusted OR = 0.51, 95% CI = 0.37-0.69; CG/TT vs. CC/TT: adjusted OR = 0.71, 95% CI = 0.55-0.92), suggesting cumulative effects of the polymorphisms. False positive report possibility analysis further verified that our findings are noteworthy. Overall, we confirmed that miR-34b/c rs4938723 and TP53 Arg72Pro conferred decreased neuroblastoma risk and two polymorphisms exerted stronger protective effects against neuroblastoma than either one alone.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroblastoma.

          Neuroblastoma is the most common extracranial solid tumour occurring in childhood and has a diverse clinical presentation and course depending on the tumour biology. Unique features of these neuroendocrine tumours are the early age of onset, the high frequency of metastatic disease at diagnosis and the tendency for spontaneous regression of tumours in infancy. The most malignant tumours have amplification of the MYCN oncogene (encoding a transcription factor), which is usually associated with poor survival, even in localized disease. Although transgenic mouse models have shown that MYCN overexpression can be a tumour-initiating factor, many other cooperating genes and tumour suppressor genes are still under investigation and might also have a role in tumour development. Segmental chromosome alterations are frequent in neuroblastoma and are associated with worse outcome. The rare familial neuroblastomas are usually associated with germline mutations in ALK, which is mutated in 10-15% of primary tumours, and provides a potential therapeutic target. Risk-stratified therapy has facilitated the reduction of therapy for children with low-risk and intermediate-risk disease. Advances in therapy for patients with high-risk disease include intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy; these have improved 5-year overall survival to 50%. Currently, new approaches targeting the noradrenaline transporter, genetic pathways and the tumour microenvironment hold promise for further improvements in survival and long-term quality of life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The codon 72 polymorphic variants of p53 have markedly different apoptotic potential.

            The gene TP53, encoding p53, has a common sequence polymorphism that results in either proline or arginine at amino-acid position 72. This polymorphism occurs in the proline-rich domain of p53, which is necessary for the protein to fully induce apoptosis. We found that in cell lines containing inducible versions of alleles encoding the Pro72 and Arg72 variants, and in cells with endogenous p53, the Arg72 variant induces apoptosis markedly better than does the Pro72 variant. Our data indicate that at least one source of this enhanced apoptotic potential is the greater ability of the Arg72 variant to localize to the mitochondria; this localization is accompanied by release of cytochrome c into the cytosol. These data indicate that the two polymorphic variants of p53 are functionally distinct, and these differences may influence cancer risk or treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth.

              MicroRNAs (miRNA) are a recently discovered class of noncoding RNAs that negatively regulate gene expression. Recent evidence indicates that miRNAs may play an important role in cancer. However, the mechanism of their deregulation in neoplastic transformation has only begun to be understood. To elucidate the role of tumor suppressor p53 in regulation of miRNAs, we have analyzed changes in miRNA microarray expression profile immediately after conditional inactivation of p53 in primary mouse ovarian surface epithelium cells. Among the most significantly affected miRNAs were miR-34b and miR-34c, which were down-regulated 12-fold according to quantitative reverse transcription-PCR analysis. Computational promoter analysis of the mir-34b/mir-34c locus identified the presence of evolutionarily conserved p53 binding sites approximately 3 kb upstream of the miRNA coding sequence. Consistent with evolutionary conservation, mir-34b/mir-34c were also down-regulated in p53-null human ovarian carcinoma cells. Furthermore, as expected from p53 binding to the mir-34b/c promoter, doxorubicin treatment of wild-type, but not p53-deficient, cells resulted in an increase of mir-34b/mir-34c expression. Importantly, miR-34b and miR-34c cooperate in suppressing proliferation and soft-agar colony formation of neoplastic epithelial ovarian cells, in agreement with the partially overlapping spectrum of their predicted targets. Taken together, these results show the existence of a novel mechanism by which p53 suppresses such critical components of neoplastic growth as cell proliferation and adhesion-independent colony formation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Transl Oncol
                Transl Oncol
                Translational Oncology
                Neoplasia Press
                1936-5233
                17 July 2019
                October 2019
                17 July 2019
                : 12
                : 10
                : 1282-1288
                Affiliations
                [* ]Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
                []Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
                []Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
                [§ ]Department of Pathology, Anhui Provincial Children's Hospital, Hefei 230051, Anhui, China
                []Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
                [# ]Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
                [** ]Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
                [†† ]Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
                Author notes
                [* ]Address all correspondence to: Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China. or Jiwen Cheng, Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West 5 Road, Xi'an 710004, Shaanxi, China. hejing198374@ 123456gmail.com chengjiwen68@ 123456163.com
                [2]

                These authors contribute equally.

                Article
                S1936-5233(19)30250-5
                10.1016/j.tranon.2019.06.008
                6639677
                31325764
                8ca540e7-78e7-4c8f-b037-11e845fcb6cf
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 20 May 2019
                : 26 June 2019
                : 28 June 2019
                Categories
                Original article

                Comments

                Comment on this article