• Record: found
  • Abstract: found
  • Article: found
Is Open Access

Effects of environmental pollutants on the reproduction and welfare of ruminants

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare.

      Related collections

      Most cited references 146

      • Record: found
      • Abstract: found
      • Article: not found

      Epigenetic transgenerational actions of endocrine disruptors and male fertility.

      Transgenerational effects of environmental toxins require either a chromosomal or epigenetic alteration in the germ line. Transient exposure of a gestating female rat during the period of gonadal sex determination to the endocrine disruptors vinclozolin (an antiandrogenic compound) or methoxychlor (an estrogenic compound) induced an adult phenotype in the F1 generation of decreased spermatogenic capacity (cell number and viability) and increased incidence of male infertility. These effects were transferred through the male germ line to nearly all males of all subsequent generations examined (that is, F1 to F4). The effects on reproduction correlate with altered DNA methylation patterns in the germ line. The ability of an environmental factor (for example, endocrine disruptor) to reprogram the germ line and to promote a transgenerational disease state has significant implications for evolutionary biology and disease etiology.
        • Record: found
        • Abstract: found
        • Article: not found

        Developmental effects of endocrine-disrupting chemicals in wildlife and humans.

        Large numbers and large quantities of endocrine-disrupting chemicals have been released into the environment since World War II. Many of these chemicals can disturb development of the endocrine system and of the organs that respond to endocrine signals in organisms indirectly exposed during prenatal and/or early postnatal life; effects of exposure during development are permanent and irreversible. The risk to the developing organism can also stem from direct exposure of the offspring after birth or hatching. In addition, transgenerational exposure can result from the exposure of the mother to a chemical at any time throughout her life before producing offspring due to persistence of endocrine-disrupting chemicals in body fat, which is mobilized during egg laying or pregnancy and lactation. Mechanisms underlying the disruption of the development of vital systems, such as the endocrine, reproductive, and immune systems, are discussed with reference to wildlife, laboratory animals, and humans.
          • Record: found
          • Abstract: found
          • Article: not found

          Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis

          Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits.

            Author and article information

            [1 ]Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
            [2 ]Division of Cell Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow G6 1QH, UK
            [3 ]MRC Human Reproductive Sciences Unit, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
            [4 ]INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
            [5 ]Schools of Biosciences, and Veterinary Medicine and Sciences, University of Nottingham, Leicestershire, LE12 5RD, UK
            [6 ]Department of Animal Science, Division of Veterinary Anatomy and Histology, University of Milan, Via Celoria 10, 20133 Milano, Italy
            [7 ]Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
            [8 ]Centre for Reproductive Endocrinology & Medicine, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
            Author notes
            Cambridge University Press (Cambridge, UK )
            21 April 2010
            July 2010
            : 4
            : 7 , XIth International Symposium on Ruminant Physiology (ISRP), 6–9 September, 2009 Clermont-Ferrand (France)
            : 1227-1239
            S1751731110000595 00059
            Copyright © The Animal Consortium 2010 The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence <>. The written permission of Cambridge University Press must be obtained for commercial re-use.

            The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence <>. The written permission of Cambridge University Press must be obtained for commercial re-use.

            Pages: 13
            Full Paper


            Comment on this article