19
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      The scope of dental education during COVID‐19 pandemic: A systematic review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          COVID‐19 forced e‐learning processes to develop abruptly and posed challenges to the educational infrastructure. Emergency Remote Teaching was designated to distinguish the new educational scheme. This concept involves production of online activities that may return to face‐to‐face format as soon as the isolation period ends.

          Objective

          From March through September of 2020, this systematic review attempted to elucidate experiences, benefits, and challenges enforced in dental education due to the pandemic, the learning technologies, and methods used to maintain education.

          Methods

          A literature search was conducted on Cochrane, Embase, Lilacs, Livivo, PubMed, Scopus, and Web of Science databases. Gray literature was also contemplated. Studies in which online teaching methods were described and dental learners were the subjects during pandemic were included.

          Results

          Learning technology, pedagogical model, knowledge gain, and dental learners’ satisfaction and attitudes toward remote learning were assessed. The Joanna Briggs Institute JBI Critical Appraisal Checklist for Case Reports was applied as the methodological quality assessment to the 16 included studies. Assessments were related to demographic and historical characteristics of the participants, the intervention procedure, pre‐ and post‐intervention descriptions, and identification of unanticipated events. All studies described the use of learning technology to ensure education continuity, and 15 studies highlighted the pedagogical model applied. Eight studies investigated knowledge gain while 12 searched the learners’ satisfaction with online technologies.

          Conclusion

          The evidence suggests that learning technologies can support continuity in dental education. Reported problems include poor knowledge of faculty members on how to deal with technology, Internet connection, and content transition to online education.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement

          Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Terminology The terminology used to describe a systematic review and meta-analysis has evolved over time. One reason for changing the name from QUOROM to PRISMA was the desire to encompass both systematic reviews and meta-analyses. We have adopted the definitions used by the Cochrane Collaboration.9 A systematic review is a review of a clearly formulated question that uses systematic and explicit methods to identify, select, and critically appraise relevant research, and to collect and analyze data from the studies that are included in the review. Statistical methods (meta-analysis) may or may not be used to analyze and summarize the results of the included studies. Meta-analysis refers to the use of statistical techniques in a systematic review to integrate the results of included studies. Developing the PRISMA Statement A 3-day meeting was held in Ottawa, Canada, in June 2005 with 29 participants, including review authors, methodologists, clinicians, medical editors, and a consumer. The objective of the Ottawa meeting was to revise and expand the QUOROM checklist and flow diagram, as needed. The executive committee completed the following tasks, prior to the meeting: a systematic review of studies examining the quality of reporting of systematic reviews, and a comprehensive literature search to identify methodological and other articles that might inform the meeting, especially in relation to modifying checklist items. An international survey of review authors, consumers, and groups commissioning or using systematic reviews and meta-analyses was completed, including the International Network of Agencies for Health Technology Assessment (INAHTA) and the Guidelines International Network (GIN). The survey aimed to ascertain views of QUOROM, including the merits of the existing checklist items. The results of these activities were presented during the meeting and are summarized on the PRISMA Website. Only items deemed essential were retained or added to the checklist. Some additional items are nevertheless desirable, and review authors should include these, if relevant.10 For example, it is useful to indicate whether the systematic review is an update11 of a previous review, and to describe any changes in procedures from those described in the original protocol. Shortly after the meeting a draft of the PRISMA checklist was circulated to the group, including those invited to the meeting but unable to attend. A disposition file was created containing comments and revisions from each respondent, and the checklist was subsequently revised 11 times. The group approved the checklist, flow diagram, and this summary paper. Although no direct evidence was found to support retaining or adding some items, evidence from other domains was believed to be relevant. For example, Item 5 asks authors to provide registration information about the systematic review, including a registration number, if available. Although systematic review registration is not yet widely available,12,13 the participating journals of the International Committee of Medical Journal Editors (ICMJE)14 now require all clinical trials to be registered in an effort to increase transparency and accountability.15 Those aspects are also likely to benefit systematic reviewers, possibly reducing the risk of an excessive number of reviews addressing the same question16,17 and providing greater transparency when updating systematic reviews. The PRISMA Statement The PRISMA Statement consists of a 27-item checklist (Table 1; see also Text S1 for a downloadable template for researchers to re-use) and a 4-phase flow diagram (Figure 1; see also Figure S1 for a downloadable template for researchers to re-use). The aim of the PRISMA Statement is to help authors improve the reporting of systematic reviews and meta-analyses. We have focused on randomized trials, but PRISMA can also be used as a basis for reporting systematic reviews of other types of research, particularly evaluations of interventions. PRISMA may also be useful for critical appraisal of published systematic reviews. However, the PRISMA checklist is not a quality assessment instrument to gauge the quality of a systematic review. Box 1 Conceptual issues in the evolution from QUOROM to PRISMA Figure 1 Flow of information through the different phases of a systematic review Table 1 Checklist of items to include when reporting a systematic review or meta-analysis From QUOROM to PRISMA The new PRISMA checklist differs in several respects from the QUOROM checklist, and the substantive specific changes are highlighted in Table 2. Generally, the PRISMA checklist “decouples” several items present in the QUOROM checklist and, where applicable, several checklist items are linked to improve consistency across the systematic review report. Table 2 Substantive specific changes between the QUOROM checklist and the PRISMA checklist (a tick indicates the presence of the topic in QUOROM or PRISMA) The flow diagram has also been modified. Before including studies and providing reasons for excluding others, the review team must first search the literature. This search results in records. Once these records have been screened and eligibility criteria applied, a smaller number of articles will remain. The number of included articles might be smaller (or larger) than the number of studies, because articles may report on multiple studies and results from a particular study may be published in several articles. To capture this information, the PRISMA flow diagram now requests information on these phases of the review process. Endorsement The PRISMA Statement should replace the QUOROM Statement for those journals that have endorsed QUOROM. We hope that other journals will support PRISMA; they can do so by registering on the PRISMA Website. To underscore to authors, and others, the importance of transparent reporting of systematic reviews, we encourage supporting journals to reference the PRISMA Statement and include the PRISMA web address in their Instructions to Authors. We also invite editorial organizations to consider endorsing PRISMA and encourage authors to adhere to its principles. The PRISMA Explanation and Elaboration Paper In addition to the PRISMA Statement, a supporting Explanation and Elaboration document has been produced18 following the style used for other reporting guidelines.19-21 The process of completing this document included developing a large database of exemplars to highlight how best to report each checklist item, and identifying a comprehensive evidence base to support the inclusion of each checklist item. The Explanation and Elaboration document was completed after several face-to-face meetings and numerous iterations among several meeting participants, after which it was shared with the whole group for additional revisions and final approval. Finally, the group formed a dissemination subcommittee to help disseminate and implement PRISMA. Discussion The quality of reporting of systematic reviews is still not optimal.22-27 In a recent review of 300 systematic reviews, few authors reported assessing possible publication bias,22 even though there is overwhelming evidence both for its existence28 and its impact on the results of systematic reviews.29 Even when the possibility of publication bias is assessed, there is no guarantee that systematic reviewers have assessed or interpreted it appropriately.30 Although the absence of reporting such an assessment does not necessarily indicate that it was not done, reporting an assessment of possible publication bias is likely to be a marker of the thoroughness of the conduct of the systematic review. Several approaches have been developed to conduct systematic reviews on a broader array of questions. For example, systematic reviews are now conducted to investigate cost-effectiveness,31 diagnostic32 or prognostic questions,33 genetic associations,34 and policy-making.35 The general concepts and topics covered by PRISMA are all relevant to any systematic review, not just those whose objective is to summarize the benefits and harms of a health care intervention. However, some modifications of the checklist items or flow diagram will be necessary in particular circumstances. For example, assessing the risk of bias is a key concept, but the items used to assess this in a diagnostic review are likely to focus on issues such as the spectrum of patients and the verification of disease status, which differ from reviews of interventions. The flow diagram will also need adjustments when reporting individual patient data meta-analysis.36 We have developed an explanatory document18 to increase the usefulness of PRISMA. For each checklist item, this document contains an example of good reporting, a rationale for its inclusion, and supporting evidence, including references, whenever possible. We believe this document will also serve as a useful resource for those teaching systematic review methodology. We encourage journals to include reference to the explanatory document in their Instructions to Authors. Like any evidence-based endeavour, PRISMA is a living document. To this end we invite readers to comment on the revised version, particularly the new checklist and flow diagram, through the PRISMA website. We will use such information to inform PRISMA's continued development. Note: To encourage dissemination of the PRISMA Statement, this article is freely accessible on the Open Medicine website and the PLoS Medicine website and is also published in the Annals of Internal Medicine, BMJ, and Journal of Clinical Epidemiology. The authors jointly hold the copyright of this article. For details on further use, see the PRISMA website. The PRISMA Explanation and Elaboration Paper is available at the PLoS Medicine website. Supporting Information Figure S1 Flow of information through the different phases of a systematic review (downloadable template document for researchers to re-use) Text S1 Checklist of items to include when reporting a systematic review or meta-analysis (downloadable template document for researchers to re-use)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed

            The 2019 novel coronavirus (2019-nCoV) pneumonia, believed to have originated in a wet market in Wuhan, Hubei province, China at the end of 2019, has gained intense attention nationwide and globally. To lower the risk of further disease transmission, the authority in Wuhan suspended public transport indefinitely from Jan 23, 2020; similar measures were adopted soon in many other cities in China. As of Jan 25, 2020, 30 Chinese provinces, municipalities, and autonomous regions covering over 1·3 billion people have initiated first-level responses to major public health emergencies. A range of measures has been urgently adopted,1, 2 such as early identification and isolation of suspected and diagnosed cases, contact tracing and monitoring, collection of clinical data and biological samples from patients, dissemination of regional and national diagnostic criteria and expert treatment consensus, establishment of isolation units and hospitals, and prompt provision of medical supplies and external expert teams to Hubei province. The emergence of the 2019-nCoV pneumonia has parallels with the 2003 outbreak of severe acute respiratory syndrome (SARS), which was caused by another coronavirus that killed 349 of 5327 patients with confirmed infection in China. 3 Although the diseases have different clinical presentations,1, 4 the infectious cause, epidemiological features, fast transmission pattern, and insufficient preparedness of health authorities to address the outbreaks are similar. So far, mental health care for the patients and health professionals directly affected by the 2019-nCoV epidemic has been under-addressed, although the National Health Commission of China released the notification of basic principles for emergency psychological crisis interventions for the 2019-nCoV pneumonia on Jan 26, 2020. 5 This notification contained a reference to mental health problems and interventions that occurred during the 2003 SARS outbreak, and mentioned that mental health care should be provided for patients with 2019-nCoV pneumonitis, close contacts, suspected cases who are isolated at home, patients in fever clinics, families and friends of affected people, health professionals caring for infected patients, and the public who are in need. To date, epidemiological data on the mental health problems and psychiatric morbidity of those suspected or diagnosed with the 2019-nCoV and their treating health professionals have not been available; therefore how best to respond to challenges during the outbreak is unknown. The observations of mental health consequences and measures taken during the 2003 SARS outbreak could help inform health authorities and the public to provide mental health interventions to those who are in need. Patients with confirmed or suspected 2019-nCoV may experience fear of the consequences of infection with a potentially fatal new virus, and those in quarantine might experience boredom, loneliness, and anger. Furthermore, symptoms of the infection, such as fever, hypoxia, and cough, as well as adverse effects of treatment, such as insomnia caused by corticosteroids, could lead to worsening anxiety and mental distress. 2019-nCoV has been repeatedly described as a killer virus, for example on WeChat, which has perpetuated the sense of danger and uncertainty among health workers and the public. In the early phase of the SARS outbreak, a range of psychiatric morbidities, including persistent depression, anxiety, panic attacks, psychomotor excitement, psychotic symptoms, delirium, and even suicidality, were reported.6, 7 Mandatory contact tracing and 14 days quarantine, which form part of the public health responses to the 2019-nCoV pneumonia outbreak, could increase patients' anxiety and guilt about the effects of contagion, quarantine, and stigma on their families and friends. Health professionals, especially those working in hospitals caring for people with confirmed or suspected 2019-nCoV pneumonia, are vulnerable to both high risk of infection and mental health problems. They may also experience fear of contagion and spreading the virus to their families, friends, or colleagues. Health workers in a Beijing hospital who were quarantined, worked in high-risk clinical settings such as SARS units, or had family or friends who were infected with SARS, had substantially more post-traumatic stress symptoms than those without these experiences. 8 Health professionals who worked in SARS units and hospitals during the SARS outbreak also reported depression, anxiety, fear, and frustration.6, 9 Despite the common mental health problems and disorders found among patients and health workers in such settings, most health professionals working in isolation units and hospitals do not receive any training in providing mental health care. Timely mental health care needs to be developed urgently. Some methods used in the SARS outbreak could be helpful for the response to the 2019-nCoV outbreak. First, multidisciplinary mental health teams established by health authorities at regional and national levels (including psychiatrists, psychiatric nurses, clinical psychologists, and other mental health workers) should deliver mental health support to patients and health workers. Specialised psychiatric treatments and appropriate mental health services and facilities should be provided for patients with comorbid mental disorders. Second, clear communication with regular and accurate updates about the 2019-nCoV outbreak should be provided to both health workers and patients in order to address their sense of uncertainty and fear. Treatment plans, progress reports, and health status updates should be given to both patients and their families. Third, secure services should be set up to provide psychological counselling using electronic devices and applications (such as smartphones and WeChat) for affected patients, as well as their families and members of the public. Using safe communication channels between patients and families, such as smartphone communication and WeChat, should be encouraged to decrease isolation. Fourth, suspected and diagnosed patients with 2019-nCoV pneumonia as well as health professionals working in hospitals caring for infected patients should receive regular clinical screening for depression, anxiety, and suicidality by mental health workers. Timely psychiatric treatments should be provided for those presenting with more severe mental health problems. For most patients and health workers, emotional and behavioural responses are part of an adaptive response to extraordinary stress, and psychotherapy techniques such as those based on the stress-adaptation model might be helpful.7, 10 If psychotropic medications are used, such as those prescribed by psychiatrists for severe psychiatric comorbidities, 6 basic pharmacological treatment principles of ensuring minimum harm should be followed to reduce harmful effects of any interactions with 2019-nCoV and its treatments. In any biological disaster, themes of fear, uncertainty, and stigmatisation are common and may act as barriers to appropriate medical and mental health interventions. Based on experience from past serious novel pneumonia outbreaks globally and the psychosocial impact of viral epidemics, the development and implementation of mental health assessment, support, treatment, and services are crucial and pressing goals for the health response to the 2019-nCoV outbreak. © 2020 VW Pics/Science Photo Library 2020 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Closure of Universities Due to Coronavirus Disease 2019 (COVID-19): Impact on Education and Mental Health of Students and Academic Staff

              The novel coronavirus disease 2019 (COVID-19), originated in Wuhan city of China, has spread rapidly around the world, sending billions of people into lockdown. The World Health Organization (WHO) declared the coronavirus epidemic a pandemic. In light of rising concern about the current COVID-19 pandemic, a growing number of universities across the world have either postponed or canceled all campus events such as workshops, conferences, sports, and other activities. Universities are taking intensive measures to prevent and protect all students and staff members from the highly infectious disease. Faculty members are already in the process of transitioning to online teaching platforms. In this review, the author will highlight the potential impact of the terrible COVID-19 outbreak on the education and mental health of students and academic staff.
                Bookmark

                Author and article information

                Contributors
                nize.gal@gmail.com
                Journal
                J Dent Educ
                J Dent Educ
                10.1002/(ISSN)1930-7837
                JDD
                Journal of Dental Education
                John Wiley and Sons Inc. (Hoboken )
                0022-0337
                1930-7837
                23 March 2021
                : 10.1002/jdd.12587
                Affiliations
                [ 1 ] Department of Dentistry Health Sciences Faculty University of Brasília Brasília Brazil
                Author notes
                [*] [* ] Correspondence

                Glaucia N. M. Santos, University Hospital of Brasília. SGAN 605/606 Avenida L2 Norte 70840‐901 Brasília/DF, Brazil.

                Email: nize.gal@ 123456gmail.com

                Article
                JDD12587
                10.1002/jdd.12587
                8251403
                33759214
                8ce43f4a-a2c1-46ca-8245-985524d77de8
                © 2021 American Dental Education Association

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 21 February 2021
                : 20 November 2020
                : 27 February 2021
                Page count
                Figures: 1, Tables: 2, Pages: 14, Words: 7254
                Categories
                Review Article
                Review Articles
                Custom metadata
                2.0
                corrected-proof
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.4 mode:remove_FC converted:02.07.2021

                coronavirus,covid‐19,dental education,dentistry,e‐learning,emergency remote teaching,systematic review

                Comments

                Comment on this article