154
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      VHL基因突变所致家族性红细胞增多症2型一例及文献复习 Translated title: A case of familial erythrocytosis type 2 caused by VHL gene mutation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          红细胞增多症病因繁多,或由于组织缺氧引起的代偿机制,或由于JAK2酪氨酸激酶体细胞突变导致真性红细胞增多症(PV),或为遗传性红细胞增多症。遗传性红细胞增多症已知机制包括高氧亲和力血红蛋白变体(HOA)和二磷酸甘油酸变位酶(BPGM)缺乏所致血红蛋白病及红细胞生成素受体(EPOR)和氧敏感途径(OSP)异常引起的家族性红细胞增多症(familial erythrocytosis,FE)。其中OSP的最新研究已证实相关基因突变会导致von Hippel-Lindau(VHL,FE 2型)、脯氨酰羟化酶结构域2(PHD2,FE 3型)、低氧诱导因子2α亚基(HIF2A,FE 4型)功能异常继发FE[1]–[2]。我科近期收住一例VHL基因纯合突变致FE 2型患者,为国内首次报告,现对其基因突变特征及致病的分子机制、家系、临床资料等分析如下。 病例资料 患者,男,21岁,主因“齿龈渗血半年,伴头痛头晕1个月”于2019年11月就诊,查血常规示:WBC 8.04×109/L,RBC 7.82×1012/L,HGB 272 g/L,PLT 85×109/L,以“红细胞增多症”收住我科。患者既往有红细胞增多病史3年余。入院查体:神清,颜面及颈部潮红,口唇、甲床呈紫红,周身浅表淋巴结未触及肿大,心肺腹查体未见异常,双下肢无水肿。末梢血涂片:成熟红细胞呈地毯样密集分布。血生化:葡萄糖(空腹)3.2 mmol/L(正常参考值3.9~6.1 mmol/L),尿酸478 µmol/L。凝血全套:纤维蛋白原1.8 g/L(正常参考值2.2~5.0 g/L),其他指标正常;红细胞生成素(EPO)浓度26.65 U/L(正常参考值2.59~18.50 U/L);肝肾功能、电解质、免疫球蛋白、心肌酶谱、肿瘤标志物、贫血三项(叶酸、维生素B12、血清铁蛋白)、淋巴细胞亚群、降钙素原、尿便常规均正常;类风湿因子、抗ENA、抗核抗体、血及尿免疫固定电泳均阴性;EB病毒(EBV DNA)定量<1×103。骨髓象:骨髓增生活跃,红系比例增高,未见早幼红细胞,中幼红细胞占0.120(正常参考值0.026~0.107),晚幼红细胞占0.230(正常参考值0.052~0.175)。骨髓活检:①骨髓有核细胞增生活跃,脂肪组织大致正常;②粒系增生,各阶段细胞比例正常;③红系增生异常活跃,以晚幼红为主;④巨核系增生减低,形态大致正常;⑤淋巴及浆细胞散在分布;⑥可见局灶少量的纤维组织。骨髓染色体核型分析未见异常;骨髓JAK2 V617F及12~15号外显子、MPL、CALR检测未见异常;心脏彩超正常;头胸腹增强CT未见异常。胃肠镜检查未见异常。患者父母非近亲结婚,家族史及遗传史无异常。本研究已征得患者及其父母知情同意,并获得本院伦理委员会批准。 基因检测:患者携带有VHL基因纯合突变c.598C>T(p.Arg200Trp),区带3p25.3,序列NM_000551.3,位置Exon3,为错义突变(图1A),患者上述突变分别遗传自其父母,c.598C>T的杂合核苷酸突变,家系验证来源于父亲,c.598C>T的杂合核苷酸突变,家系验证来源于母亲,其父母均只携带其中1个杂合突变,为正常表型(图1B、C)。VHL基因纯合突变在金域医学数据库KMTD、千人基因组数据库1000 genomics均未见收录。美国国家心肺血液研究所ESP6500数据库有收录(0.0002)。生物信息学软件预测其致病可能性大。根据美国医学遗传学与基因组学会(American College of Medical Genetics and Genomics,ACMG)2015指南,该突变分类为病理性突变。上述突变不属于多态性变化,在人群中发生的频率极低,上述突变可能导致蛋白质功能受到影响,结合患者临床表现、实验室检查、影像学检查,确诊为家族性红细胞增多症2型。 图1 红细胞增多症2型患者及其父母VHL基因测序图 A:患者VHL 3p25.3 NM_000551.3 Exon3 c.598C>T p.(Arg200Trp)纯合突变;B:患者母亲VHL 3p25.3 NM_000551.3 Exon3 c.598C>T p.(Arg200Trp)杂合突变;C:患者父亲VHL 3p25.3 NM_000551.3 Exon3 c.598C>T p.(Arg200Trp)杂合突变 讨论及文献复习 FE是常染色体隐性遗传的红细胞增多症,发病率极低,临床罕见。根据发病原因分为原发性和继发性,原发性为EPOR基因突变,为FE 1型,也称为先天性红细胞增多症(CE)或原发性先天性家族性红细胞增多症[3]–[5]。继发性FE是由于OSP相关基因突变,导致促红细胞生成物质(主要为EPO)调节异常,血清EPO水平升高[6],继发红细胞增多。 本例患者VHL等位基因发生错义突变并纯合突变,其父母均为杂合突变表型正常,为隐性遗传,且缺乏原发和继发红细胞增多的证据,EPO浓度增高,可明确诊断为FE 2型。FE 2型与VHL病鉴别如下:VHL病通常均以常染色体显性的方式遗传,VHL基因缺陷位于染色体3p25.5,如发生体细胞突变,还可引起小脑成血管细胞瘤、肾细胞癌;临床表现有红细胞增多症、神经系统血管母细胞瘤、嗜铬细胞瘤、肾细胞癌或肾囊肿、胰腺肿瘤或胰腺囊肿、内耳淋巴囊肿和生殖系统囊肿等,其临床表型多变[7]。FE 2型为常染色体隐性遗传,VHL基因缺陷位于染色体3p25-26,临床表现有红细胞增多、红细胞比容升高、血红蛋白升高、静脉曲张、头痛等。 随着对FE的深入研究,2002年Ang等[8]发现VHL基因突变,定位在3号染色体上,提出pVHL功能的破坏会导致HIF-1α降解失败,从而导致HIF-1α积累,下游靶基因(如EPO)上调以及红细胞增多症的临床表现。Mallik等[9]对FE研究发现纯合VHL c.598C>T(p.Arg200Trp)是FE最常见的致病突变,由此使FE的发病机制逐渐被阐明。VHL基因全长约为16 kb,包含E1、E2、E3三个外显子,可翻译成两种蛋白异构体,即含有213个氨基酸残基的pVHL30和含有160个氨基酸残基的pVHL19,这两种异构体生物学效应相似[10]。pVHL涉及多种功能,研究最多的是OSP,即HIF-PHD通路,其主要参与者是HIF,HIF是一种低氧依赖性的转录因子,它以3种亚型HIF-1α、HIF-2α和HIF-3α存在,通过激活基因转录参与调控机体对缺氧的全身和局部应答。在正常氧气供应下,HIF的α亚基被氧化,随后被PHD羟基化,然后与pVHL结合,pVHL是E3泛素连接酶复合物的一个亚基,能直接与转录延长因子Elongin C连接,再结合Elongin B、CUL2蛋白和环指蛋白RBX1最终形成VCB-CR复合体,该复合体属于E3泛素连接酶系统,可促进HIF-α泛素化并随后在蛋白酶体降解[11],从而不会产生EPO。PHD是HIF降解的限速酶,在缺氧或VHL基因突变情况下,PHD活性降低,使HIF-α亚基保持稳定,并与HIF-β亚基结合成二聚体,构成功能性HIF复合物易位至细胞核,并与靶基因的缺氧反应元件结合,转录激活与适应减少氧气供应有关的包括EPO在内的200多个基因的表达[12]–[13]。该患者VHL基因突变致缺氧途径的失调,EPO水平增高,是红细胞增多的根本原因。 多数FE 2型患者无症状,部分患者因红细胞增多引起血液流速减慢,血液淤滞,造成组织器官缺氧,引起一系列的临床症状,最常见是反复头痛头晕,其他表现包括疲劳、怕热、胸闷、胸痛、高血压、劳累性呼吸困难及腹痛和脾肿大,血栓并发症包括脑血管意外、短暂性脑缺血发作、肺栓塞、肢体血栓形成、门静脉血栓形成和深静脉血栓形成等[14]。该患者主要表现为头痛头晕同时伴有间断齿龈少量渗血,齿龈渗血考虑可能与原发病、血小板及纤维蛋白原减低等相关,具体原因仍不明确。实验室检查提示患者血糖(空腹)波动于3.0~3.4 mmol/L,考虑与FE相关。McClain等[15]报道VHL 598C> T纯合突变与较低的葡萄糖浓度和较低的糖基化血红蛋白水平相关,HIF-1a或HIF-2a上调可能导致血清葡萄糖浓度降低,葡萄糖转运蛋白GLUT2和糖异生葡萄糖6磷酸酶(G6PC)的肝表达降低,以及葡萄糖异生磷酸烯醇丙酮酸羧激酶的限速酶表达降低,但GLUT1或PDK2的表达没有明显增加。这些发现表明,肝糖原异生的损害导致了FE患者血糖的总体下降,导致葡萄糖从肝脏的释放受损,肝糖原储存增加和低血糖。 综上,我们报道了国内首例VHL基因c.598C>T纯合突变所致FE 2型病例,并探讨了FE 2型遗传学病因和发病的分子基础。

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.

          Hypoxia-inducible factor-1 (HIF-1) has a key role in cellular responses to hypoxia, including the regulation of genes involved in energy metabolism, angiogenesis and apoptosis. The alpha subunits of HIF are rapidly degraded by the proteasome under normal conditions, but are stabilized by hypoxia. Cobaltous ions or iron chelators mimic hypoxia, indicating that the stimuli may interact through effects on a ferroprotein oxygen sensor. Here we demonstrate a critical role for the von Hippel-Lindau (VHL) tumour suppressor gene product pVHL in HIF-1 regulation. In VHL-defective cells, HIF alpha-subunits are constitutively stabilized and HIF-1 is activated. Re-expression of pVHL restored oxygen-dependent instability. pVHL and HIF alpha-subunits co-immunoprecipitate, and pVHL is present in the hypoxic HIF-1 DNA-binding complex. In cells exposed to iron chelation or cobaltous ions, HIF-1 is dissociated from pVHL. These findings indicate that the interaction between HIF-1 and pVHL is iron dependent, and that it is necessary for the oxygen-dependent degradation of HIF alpha-subunits. Thus, constitutive HIF-1 activation may underlie the angiogenic phenotype of VHL-associated tumours. The pVHL/HIF-1 interaction provides a new focus for understanding cellular oxygen sensing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A gain-of-function mutation in the HIF2A gene in familial erythrocytosis.

            Hypoxia-inducible factor (HIF) alpha, which has three isoforms, is central to the continuous balancing of the supply and demand of oxygen throughout the body. HIF-alpha is a transcription factor that modulates a wide range of processes, including erythropoiesis, angiogenesis, and cellular metabolism. We describe a family with erythrocytosis and a mutation in the HIF2A gene, which encodes the HIF-2alpha protein. Our functional studies indicate that this mutation leads to stabilization of the HIF-2alpha protein and suggest that wild-type HIF-2alpha regulates erythropoietin production in adults. 2008 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove.

              The molecular basis of the erythrocytosis group of red cell disorders is incompletely defined. Some cases are due to dysregulation of erythropoietin (Epo) synthesis. The hypoxia inducible transcription factor (HIF) tightly regulates Epo synthesis. HIF in turn is regulated through its alpha subunit, which under normoxic conditions is hydroxylated on specific prolines and targeted for degradation by the von Hippel Lindau (VHL) protein. Several mutations in VHL have been reported in erythrocytosis, but only 1 mutation in the HIF prolyl hydroxylase PHD2 (prolyl hydroxylase domain protein 2) has been described. Here, we report a novel PHD2 mutation, Arg371His, which causes decreased HIF binding, HIF hydroxylase, and HIF inhibitory activities. In the tertiary structure of PHD2, Arg371 lies close to the previously described Pro317Arg mutation site. These findings substantiate PHD2 as a critical enzyme controlling HIF and therefore Epo in humans, and furthermore suggest the location of an active site groove in PHD2 that binds HIF.
                Bookmark

                Author and article information

                Journal
                Zhonghua Xue Ye Xue Za Zhi
                Zhonghua Xue Ye Xue Za Zhi
                CJH
                Chinese Journal of Hematology
                Editorial office of Chinese Journal of Hematology (No. 288, Nanjing road, Heping district, Tianjin )
                0253-2727
                2707-9740
                December 2020
                : 41
                : 12
                : 1047-1049
                Affiliations
                [1 ]宁夏回族自治区人民医院血液内科 750021Department of Hematology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
                [2 ]宁夏回族自治区人民医院宁夏老年病中心 750021Ningxia Geriatric Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
                Author notes
                通信作者:包慎(Bao Shen),Email: 3591060@ 123456qq.com
                Article
                cjh-41-12-1047
                10.3760/cma.j.issn.0253-2727.2020.12.015
                7840559
                33445856
                8cfbe427-74c2-49c9-975e-30d609bfbf45
                2020年版权归中华医学会所有Copyright © 2020 by Chinese Medical Association

                This work is licensed under a Creative Commons Attribution 3.0 License (CC-BY-NC). The Copyright own by Publisher. Without authorization, shall not reprint, except this publication article, shall not use this publication format design. Unless otherwise stated, all articles published in this journal do not represent the views of the Chinese Medical Association or the editorial board of this journal.

                History
                : 9 August 2020
                Categories
                短篇论著

                Comments

                Comment on this article