24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Critical Evaluation of the Lund Concept for Treatment of Severe Traumatic Head Injury, 25 Years after Its Introduction

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When introduced in 1992, the Lund concept (LC) was the first complete guideline for treatment of severe traumatic brain injury (s-TBI). It was a theoretical approach, based mainly on general physiological principles—i.e., of brain volume control and optimization of brain perfusion and oxygenation of the penumbra zone. The concept gave relatively strict outlines for cerebral perfusion pressure, fluid therapy, ventilation, sedation, nutrition, the use of vasopressors, and osmotherapy. The LC strives for treatment of the pathophysiological mechanisms behind symptoms rather than just treating the symptoms. The treatment is standardized, with less need for individualization. Alternative guidelines published a few years later (e.g., the Brain Trauma Foundation guidelines and European guidelines) were mainly based on meta-analytic approaches from clinical outcome studies and to some extent from systematic reviews. When introduced, they differed extensively from the LC. We still lack any large randomized outcome study comparing the whole concept of BTF guidelines with other guidelines including the LC. From that point of view, there is limited clinical evidence favoring any of the s-TBI guidelines used today. In principle, the LC has not been changed since its introduction. Some components of the alternative guidelines have approached those in the LC. In this review, I discuss some important principles of brain hemodynamics that have been lodestars during formulation of the LC. Aspects of ventilation, nutrition, and temperature control are also discussed. I critically evaluate the most important components of the LC 25 years after its introduction, based on hemodynamic principles and on the results of own an others experimental and human studies that have been published since then.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          Decompressive craniectomy in diffuse traumatic brain injury.

          It is unclear whether decompressive craniectomy improves the functional outcome in patients with severe traumatic brain injury and refractory raised intracranial pressure. From December 2002 through April 2010, we randomly assigned 155 adults with severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first-tier therapies to undergo either bifrontotemporoparietal decompressive craniectomy or standard care. The original primary outcome was an unfavorable outcome (a composite of death, vegetative state, or severe disability), as evaluated on the Extended Glasgow Outcome Scale 6 months after the injury. The final primary outcome was the score on the Extended Glasgow Outcome Scale at 6 months. Patients in the craniectomy group, as compared with those in the standard-care group, had less time with intracranial pressures above the treatment threshold (P<0.001), fewer interventions for increased intracranial pressure (P<0.02 for all comparisons), and fewer days in the intensive care unit (ICU) (P<0.001). However, patients undergoing craniectomy had worse scores on the Extended Glasgow Outcome Scale than those receiving standard care (odds ratio for a worse score in the craniectomy group, 1.84; 95% confidence interval [CI], 1.05 to 3.24; P=0.03) and a greater risk of an unfavorable outcome (odds ratio, 2.21; 95% CI, 1.14 to 4.26; P=0.02). Rates of death at 6 months were similar in the craniectomy group (19%) and the standard-care group (18%). In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension, early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU but was associated with more unfavorable outcomes. (Funded by the National Health and Medical Research Council of Australia and others; DECRA Australian Clinical Trials Registry number, ACTRN012605000009617.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension.

            Background The effect of decompressive craniectomy on clinical outcomes in patients with refractory traumatic intracranial hypertension remains unclear. Methods From 2004 through 2014, we randomly assigned 408 patients, 10 to 65 years of age, with traumatic brain injury and refractory elevated intracranial pressure (>25 mm Hg) to undergo decompressive craniectomy or receive ongoing medical care. The primary outcome was the rating on the Extended Glasgow Outcome Scale (GOS-E) (an 8-point scale, ranging from death to "upper good recovery" [no injury-related problems]) at 6 months. The primary-outcome measure was analyzed with an ordinal method based on the proportional-odds model. If the model was rejected, that would indicate a significant difference in the GOS-E distribution, and results would be reported descriptively. Results The GOS-E distribution differed between the two groups (P<0.001). The proportional-odds assumption was rejected, and therefore results are reported descriptively. At 6 months, the GOS-E distributions were as follows: death, 26.9% among 201 patients in the surgical group versus 48.9% among 188 patients in the medical group; vegetative state, 8.5% versus 2.1%; lower severe disability (dependent on others for care), 21.9% versus 14.4%; upper severe disability (independent at home), 15.4% versus 8.0%; moderate disability, 23.4% versus 19.7%; and good recovery, 4.0% versus 6.9%. At 12 months, the GOS-E distributions were as follows: death, 30.4% among 194 surgical patients versus 52.0% among 179 medical patients; vegetative state, 6.2% versus 1.7%; lower severe disability, 18.0% versus 14.0%; upper severe disability, 13.4% versus 3.9%; moderate disability, 22.2% versus 20.1%; and good recovery, 9.8% versus 8.4%. Surgical patients had fewer hours than medical patients with intracranial pressure above 25 mm Hg after randomization (median, 5.0 vs. 17.0 hours; P<0.001) but had a higher rate of adverse events (16.3% vs. 9.2%, P=0.03). Conclusions At 6 months, decompressive craniectomy in patients with traumatic brain injury and refractory intracranial hypertension resulted in lower mortality and higher rates of vegetative state, lower severe disability, and upper severe disability than medical care. The rates of moderate disability and good recovery were similar in the two groups. (Funded by the Medical Research Council and others; RESCUEicp Current Controlled Trials number, ISRCTN66202560 .).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature.

              Red blood cell (RBC) transfusions are common in intensive care unit, trauma, and surgical patients. However, the hematocrit that should be maintained in any particular patient because the risks of further transfusion of RBC outweigh the benefits remains unclear. A systematic review of the literature to determine the association between red blood cell transfusion, and morbidity and mortality in high-risk hospitalized patients. MEDLINE, Embase, Cochrane Register of Controlled Trials, and citation review of relevant primary and review articles. Cohort studies that assessed the independent effect of RBC transfusion on patient outcomes. From 571 articles screened, 45 met inclusion criteria and were included for data extraction. Forty-five studies including 272,596 were identified (the outcomes from one study were reported in four separate publications). The outcome measures were mortality, infections, multiorgan dysfunction syndrome, and acute respiratory distress syndrome. The overall risks vs. benefits of RBC transfusion on patient outcome in each study was classified as (i) risks outweigh benefits, (ii) neutral risk, and (iii) benefits outweigh risks. The odds ratio and 95% confidence interval for each outcome measure was recorded if available. The pooled odds ratios were determined using meta-analytic techniques. Forty-five observational studies with a median of 687 patients/study (range, 63-78,974) were analyzed. In 42 of the 45 studies the risks of RBC transfusion outweighed the benefits; the risk was neutral in two studies with the benefits outweighing the risks in a subgroup of a single study (elderly patients with an acute myocardial infarction and a hematocrit <30%). Seventeen of 18 studies, demonstrated that RBC transfusions were an independent predictor of death; the pooled odds ratio (12 studies) was 1.7 (95% confidence interval, 1.4-1.9). Twenty-two studies examined the association between RBC transfusion and nosocomial infection; in all these studies blood transfusion was an independent risk factor for infection. The pooled odds ratio (nine studies) for developing an infectious complication was 1.8 (95% confidence interval, 1.5-2.2). RBC transfusions similarly increased the risk of developing multi-organ dysfunction syndrome (three studies) and acute respiratory distress syndrome (six studies). The pooled odds ratio for developing acute respiratory distress syndrome was 2.5 (95% confidence interval, 1.6-3.3). Despite the inherent limitations in the analysis of cohort studies, our analysis suggests that in adult, intensive care unit, trauma, and surgical patients, RBC transfusions are associated with increased morbidity and mortality and therefore, current transfusion practices may require reevaluation. The risks and benefits of RBC transfusion should be assessed in every patient before transfusion.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/160294
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                04 July 2017
                2017
                : 8
                : 315
                Affiliations
                [1] 1Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University , Lund, Sweden
                Author notes

                Edited by: Eric Peter Thelin, University of Cambridge, United Kingdom

                Reviewed by: Ryan Matthew Martin, University of California, Davis, United States; Mauro Oddo, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland

                *Correspondence: Per-Olof Grände, per-olof.grande@ 123456med.lu.se

                Specialty section: This article was submitted to Neurocritical and Neurohospitalist Care, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2017.00315
                5495987
                28725211
                8d0fc2b0-f6ce-4b58-ad55-92fed615f3c0
                Copyright © 2017 Grände.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 April 2017
                : 16 June 2017
                Page count
                Figures: 9, Tables: 2, Equations: 0, References: 157, Pages: 20, Words: 17607
                Funding
                Funded by: Swedish Research Council Vetenskapsrådet 10.13039/501100004359
                Award ID: 11581
                Categories
                Neuroscience
                Review

                Neurology
                brain injury,intracranial monitoring,neuroinflammation,neuroradiology,neuro-intensive care,the lund concept,the penumbra zone,brain perfusion

                Comments

                Comment on this article