11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterisation of superficial corneocytes in skin areas of the face exposed to prolonged usage of respirators by healthcare professionals during COVID-19 pandemic

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          During the COVID-19 pandemic healthcare workers (HCWs) have used respiratory protective equipment for prolonged periods, which has been associated with detrimental effects on the underlying skin. The present study aims to evaluate changes in the main cells (corneocytes) of the stratum corneum (SC) following prolonged and consecutive use of respirators.

          Methods

          17 HCWs who wore respirators daily during routine hospital practice were recruited to a longitudinal cohort study. Corneocytes were collected via tape stripping from a negative control site (area outside the respirator) and from the cheek which was in contact with the device. Corneocytes were sampled on three occasions and analysed for the level of positive-involucrin cornified envelopes (CEs) and the amount of desmoglein-1 (Dsg1), as indirect measurements of immature CEs and corneodesmosomes (CDs), respectively. These were compared to biophysical measurements (Transepidermal water loss, TEWL, and SC hydration) at the same investigation sites.

          Results

          A large degree of inter-subject variability was observed, with maximum coefficients of variation of 43% and 30% for the level of immature CEs and Dsg1, respectively. Although it was observed that there was not an effect of prolonged respirator usage on the properties of corneocytes, the level of CDs was greater at the cheek than the negative control site (p < 0.05). Furthermore, low levels of immature CEs correlated with greater TEWL values after prolonged respirator application (p < 0.01). It was also noted that a smaller proportion of immature CEs and CDs was associated with a reduced incidence of self-reported skin adverse reactions (p < 0.001).

          Conclusions

          This is the first study that investigated changes in corneocyte properties in the context of prolonged mechanical loading following respirator application. Although differences were not recorded over time, the levels of CDs and immature CEs were consistently higher in the loaded cheek compared to the negative control site and were positively correlated with a greater number of self-reported skin adverse reactions. Further studies are required to evaluate the role of corneocyte characteristics in the evaluation of both healthy and damaged skin sites.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The cornified envelope: a model of cell death in the skin.

          The epidermis functions as a barrier against the environment by means of several layers of terminally differentiated, dead keratinocytes - the cornified layer, which forms the endpoint of epidermal differentiation and death. The cornified envelope replaces the plasma membrane of differentiating keratinocytes and consists of keratins that are enclosed within an insoluble amalgam of proteins, which are crosslinked by transglutaminases and surrounded by a lipid envelope. New insights into the molecular mechanisms and the physiological endpoints of cornification are increasing our understanding of the pathological defects of this unique form of programmed cell death, which is associated with barrier malfunctions and ichthyosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans

            Literature from the past 168 years has been filtered to provide a unified summary of the regional distribution of cutaneous water and electrolyte losses. The former occurs via transepidermal water vapour diffusion and secretion from the eccrine sweat glands. Daily insensible water losses for a standardised individual (surface area 1.8 m2) will be 0.6–2.3 L, with the hands (80–160 g.h−1) and feet (50–150 g.h−1) losing the most, the head and neck losing intermediate amounts (40–75 g.h−1) and all remaining sites losing 15–60 g.h−1. Whilst sweat gland densities vary widely across the skin surface, this same individual would possess some 2.03 million functional glands, with the highest density on the volar surfaces of the fingers (530 glands.cm−2) and the lowest on the upper lip (16 glands.cm−2). During passive heating that results in a resting whole-body sweat rate of approximately 0.4 L.min−1, the forehead (0.99 mg.cm−2.min−1), dorsal fingers (0.62 mg.cm−2.min−1) and upper back (0.59 mg.cm−2.min−1) would display the highest sweat flows, whilst the medial thighs and anterior legs will secrete the least (both 0.12 mg.cm−2.min−1). Since sweat glands selectively reabsorb electrolytes, the sodium and chloride composition of discharged sweat varies with secretion rate. Across whole-body sweat rates from 0.72 to 3.65 mg.cm−2.min−1, sodium losses of 26.5–49.7 mmol.L−1 could be expected, with the corresponding chloride loss being 26.8–36.7 mmol.L−1. Nevertheless, there can be threefold differences in electrolyte losses across skin regions. When exercising in the heat, local sweat rates increase dramatically, with regional glandular flows becoming more homogeneous. However, intra-regional evaporative potential remains proportional to each local surface area. Thus, there is little evidence that regional sudomotor variations reflect an hierarchical distribution of sweating either at rest or during exercise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Short‐term Skin Reactions Following Use of N95 Respirators and Medical Masks

                Bookmark

                Author and article information

                Journal
                J Tissue Viability
                J Tissue Viability
                Journal of Tissue Viability
                Published by Elsevier Ltd on behalf of Tissue Viability Society / Society of Tissue Viability.
                0965-206X
                0965-206X
                11 February 2023
                11 February 2023
                Affiliations
                [a ]School of Chemical Engineering, University of Birmingham, Birmingham, UK
                [b ]School of Health Sciences, University of Southampton, Southampton, UK
                Author notes
                []Corresponding author.
                Article
                S0965-206X(23)00018-9
                10.1016/j.jtv.2023.02.007
                9918437
                36813598
                8d3df0ab-523b-41a4-ae5a-0fabd08ba703
                © 2023 Published by Elsevier Ltd on behalf of Tissue Viability Society / Society of Tissue Viability.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 6 November 2022
                : 27 January 2023
                : 10 February 2023
                Categories
                Article

                personal protective equipment (ppe),covid-19,corneocytes,desmoglein-1,cornified envelope,corneodesmosomes

                Comments

                Comment on this article