6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inherent growth hormone resistance in the skeletal muscle of the fine flounder is modulated by nutritional status and is characterized by high contents of truncated GHR, impairment in the JAK2/STAT5 signaling pathway, and low IGF-I expression.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A detailed understanding of how the GH and IGF-I regulate muscle growth, especially in early vertebrates, is still lacking. The fine flounder is a flatfish species exhibiting remarkably slow growth, representing an intriguing model for elucidating growth regulatory mechanisms. Key components of the GH system were examined in groups of fish during periods of feeding, fasting, and refeeding. Under feeding conditions, there is an inherent systemic and local (muscle) GH resistance, characterized by higher levels of plasma GH than of IGF-I, skeletal muscle with a greater content of the truncated GH receptor (GHRt) than of full-length GHR (GHRfl), an impaired activation of the Janus kinase 2 (JAK2)-signal transducers and activators of transcription 5 (STAT5) signaling pathway, and low IGF-I expression. Fasting leads to further elevation of plasma GH levels concomitant with suppressed IGF-I levels. The ratio of GHRfl to GHRt in muscle decreases during fasting, causing an inactivation of the JAK2/STAT5 signaling pathway and suppressed IGF-I expression, further impairing growth. When fish are returned to nutritionally favorable conditions, plasma GH levels decrease, and the ratio of GHRfl to GHRt in muscle increases, triggering JAK2/STAT5 reactivation and local IGF-I expression, concomitant with increased growth. The study suggests that systemic IGF-I is supporting basal slow growth in this species, without ruling out that local IGF-I is participating in muscle growth. These results reveal for the first time a unique model of inherent GH resistance in the skeletal muscle of a nonmammalian species and contribute to novel insights of the endocrine and molecular basis of growth regulation in earlier vertebrates.

          Related collections

          Author and article information

          Journal
          Endocrinology
          Endocrinology
          The Endocrine Society
          1945-7170
          0013-7227
          Jan 2012
          : 153
          : 1
          Affiliations
          [1 ] Laboratorio de Biotecnologia Molecular, Departamento de Ciencias Biologicas, Facultad Ciencias Biologicas, Universidad Andrés Bello, Santiago, Chile.
          Article
          en.2011-1313
          10.1210/en.2011-1313
          22028448
          8d601454-0cb2-48a8-ac22-2632f78b806e
          History

          Comments

          Comment on this article