7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-exertional malaise (PEM) is a cardinal predictive symptom in the definition of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). If the cases overexert themselves they have what is termed “payback” resulting in a worsening of symptoms or relapse which can last for days, weeks or even months. The aim was to assess the changes in biochemistry associated with the cases self-reported PEM scores over a 7-day period and the frequency of reporting over a 12-month period. Forty-seven ME/CFS cases and age/sex-matched controls had a clinical examination, completed questionnaires; were subjected to standard serum biochemistry; had their serum and urine metabolomes analyzed in an observational study. Thirty-five of the 46 ME/CFS cases reported PEM in the last 7-days and these were allocated to the PEM group. The principal biochemical change related to the 7-day severity of PEM was the fall in the purine metabolite, hypoxanthine. This decrease correlated with alterations in the glucose:lactate ratio highly suggestive of a glycolytic anomaly. Increased excretion of urine metabolites within the 7-day response period indicated a hypermetabolic event was occurring. Increases in urine excretion of methylhistidine (muscle protein degradation), mannitol (intestinal barrier deregulation) and acetate were noted with the hypermetabolic event. These data indicate hypoacetylation was occurring, which may also be related to deregulation of multiple cytoplasmic enzymes and DNA histone regulation. These findings suggest the primary events associated with PEM were due to hypoacetylation and metabolite loss during the acute PEM response.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications.

          Diabetes is associated with altered cellular metabolism, but how altered metabolism contributes to the development of diabetic complications is unknown. We used the BKS db/db diabetic mouse model to investigate changes in carbohydrate and lipid metabolism in kidney cortex, peripheral nerve, and retina. A systems approach using transcriptomics, metabolomics, and metabolic flux analysis identified tissue-specific differences, with increased glucose and fatty acid metabolism in the kidney, a moderate increase in the retina, and a decrease in the nerve. In the kidney, increased metabolism was associated with enhanced protein acetylation and mitochondrial dysfunction. To confirm these findings in human disease, we analyzed diabetic kidney transcriptomic data and urinary metabolites from a cohort of Southwestern American Indians. The urinary findings were replicated in 2 independent patient cohorts, the Finnish Diabetic Nephropathy and the Family Investigation of Nephropathy and Diabetes studies. Increased concentrations of TCA cycle metabolites in urine, but not in plasma, predicted progression of diabetic kidney disease, and there was an enrichment of pathways involved in glycolysis and fatty acid and amino acid metabolism. Our findings highlight tissue-specific changes in metabolism in complication-prone tissues in diabetes and suggest that urinary TCA cycle intermediates are potential prognostic biomarkers of diabetic kidney disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential amino acids and muscle protein recovery from resistance exercise.

            This study tests the hypothesis that a dose of 6 g of orally administered essential amino acids (EAAs) stimulates net muscle protein balance in healthy volunteers when consumed 1 and 2 h after resistance exercise. Subjects received a primed constant infusion of L-[(2)H(5)]phenylalanine and L-[1-(13)C]leucine. Samples from femoral artery and vein and biopsies from vastus lateralis were obtained. Arterial EAA concentrations increased severalfold after drinks. Net muscle protein balance (NB) increased proportionally more than arterial AA concentrations in response to drinks, and it returned rapidly to basal values when AA concentrations decreased. Area under the curve for net phenylalanine uptake above basal value was similar for the first hour after each drink (67 +/- 17 vs. 77 +/- 20 mg/leg, respectively). Because the NB response was double the response to two doses of a mixture of 3 g of EAA + 3 g of nonessential AA (NEAA) (14), we conclude that NEAA are not necessary for stimulation of NB and that there is a dose-dependent effect of EAA ingestion on muscle protein synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome.

              Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion.
                Bookmark

                Author and article information

                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                04 July 2019
                September 2019
                : 9
                : 3
                : 70
                Affiliations
                [1 ]Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville VIC 3010, Australia
                [2 ]Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biochemistry Institute, 30 Flemington Road, Parkville VIC 3010, Australia
                [3 ]CFS Discovery, Donvale Medical Centre, Donvale VIC 3111, Australia
                Author notes
                [* ]Correspondence: neilm@ 123456unimelb.edu.au ; Tel.: +61-041-246-9832
                Article
                diagnostics-09-00070
                10.3390/diagnostics9030070
                6787670
                31277442
                8dc14f7b-cacf-4ca4-ba70-5b0ecf672ad7
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 June 2019
                : 02 July 2019
                Categories
                Article

                fatigue syndrome,chronic,exercise,hypoacetylation,methylhistidine,histone deacetylation

                Comments

                Comment on this article