10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Application Status of Articular Cartilage Regeneration Techniques: Tissue-Engineered Cartilage Brings New Hope

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyaline articular cartilage lacks blood vessels, lymphatics, and nerves and is characterised by limited self-repair ability following injury. Traditional techniques of articular cartilage repair and regeneration all have certain limitations. The development of tissue engineering technology has brought hope to the regeneration of articular cartilage. The strategies of tissue-engineered articular cartilage can be divided into three types: “cell-scaffold construct,” cell-free, and scaffold-free. In “cell-scaffold construct” strategies, seed cells can be autologous chondrocytes or stem. Among them, some commercial products with autologous chondrocytes as seed cells, such as BioSeed®-C and CaReS®, have been put on the market and some products are undergoing clinical trials, such as NOVOCART® 3D. The stem cells are mainly pluripotent stem cells and mesenchymal stem cells from different sources. Cell-free strategies that indirectly utilize the repair and regeneration potential of stem cells have also been used in clinical settings, such as TruFit and MaioRegen. Finally, the scaffold-free strategy is also a new development direction, and the short-term repair results of related products, such as NOVOCART® 3D, are encouraging. In this paper, the commonly used techniques of articular cartilage regeneration in surgery are reviewed. By studying different strategies and different seed cells, the clinical application status of tissue-engineered articular cartilage is described in detail.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Fibroblast precursors in normal and irradiated mouse hematopoietic organs.

          Using the in vitro colony assay, clonogenic fibroblast precursor cells (CFU-F) were detected in the bone marrow, spleen and thymus from adult mice. The survival curve for CFU-F of mouse bone marrow irradiated in vitro has a D0 of 220 r. Regeneration of bone marrow CFU-F after whole-body irradiation with 150 r is characterized by a marked secondary loss and post-irradiation lag and dip, lasting 6 days, followed by return to normal values by about the 25th day. This pattern of post-radiation recovery of CFU-F is similar to that of the CFU-s. In addition, during the first 6 hours following irradiation the number of CFU-F increased approximately twofold.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model

            OBJECTIVES: Osteoarthritis (OA) is the most common joint disease throughout the world. Exosomes derived from miR-140-5p-overexpressing synovial mesenchymal stem cells (SMSC-140s) may be effective in treating OA. We hypothesized that exosomes derived from SMSC-140 (SMSC-140-Exos) would enhance the proliferation and migration abilities of articular chondrocytes (ACs) without harming extracellular matrix (ECM) secretion. METHODS: SMSCs were transfected with or without miR-140-5p. Exosomes derived from SMSCs or SMSC-140s (SMSC-Exos or SMSC-140-Exos) were isolated and identified. Proliferation, migration and ECM secretion were measured in vitro and compared between groups. The mechanism involving alternative Wnt signalling and activation of Yes-associated protein (YAP) was investigated using lentivirus, oligonucleotides or chemical drugs. The preventative effect of exosomes in vivo was measured using Safranin-O and Fast green staining and immunohistochemical staining. RESULTS: Wnt5a and Wnt5b carried by exosomes activated YAP via the alternative Wnt signalling pathway and enhanced proliferation and migration of chondrocytes with the side-effect of significantly decreasing ECM secretion. Highly-expressed miR-140-5p blocked this side-effect via RalA. SMSC-140-Exos enhanced the proliferation and migration of ACs without damaging ECM secretion in vitro, while in vivo, SMSC-140-Exos successfully prevented OA in a rat model. CONCLUSIONS: These findings highlight the promising potential of SMSC-140-Exos in preventing OA. We first found a potential source of exosomes and studied their merits and shortcomings. Based on our understanding of the molecular mechanism, we overcame the shortcomings by modifying the exosomes. Such exosomes derived from modified cells hold potential as future therapeutic strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration

                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi
                1687-966X
                1687-9678
                2020
                30 June 2020
                : 2020
                : 5690252
                Affiliations
                1Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province, China
                2Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
                Author notes

                Academic Editor: Darius Widera

                Author information
                https://orcid.org/0000-0001-7154-2227
                https://orcid.org/0000-0002-6994-227X
                Article
                10.1155/2020/5690252
                7345961
                32676118
                8dd2b71f-d816-44e7-a42c-eca6b92b73fa
                Copyright © 2020 Shuangpeng Jiang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 September 2019
                : 22 May 2020
                : 28 May 2020
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81772319
                Funded by: National Key R&D Program of China
                Award ID: 2018YFC1105900
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article