Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of the Probe Sequence/Structure in Developing an Ultra-Efficient Label-Free COVID-19 Detection Method Based on Competitive Dual-Emission Ratiometric DNA-Templated Silver Nanoclusters as Single Fluorescent Probes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report the development of a label-, antibody-, enzyme-, and amplification-free ratiometric fluorescent biosensor for low-cost and rapid (less than 12 min) diagnosis of COVID-19 from isolated RNA samples. The biosensor is designed on the basis of cytosine-modified antisense oligonucleotides specific for either N gene or RdRP gene that can form silver nanoclusters (AgNCs) with both green and red emission on an oligonucleotide via a one-step synthesis process. The presence of the target RNA sequence of SARS-CoV-2 causes a dual-emission ratiometric signal transduction, resulting in a limit of detection of 0.30 to 10.0 nM and appropriate linear ranges with no need for any further amplification, fluorophore, or design with a special DNA fragment. With this strategy, five different ratiometric fluorescent probes are designed, and how the T/C ratio, the length of the stem region, and the number of cytosines in the loop structure and at the 3′ end of the cluster-stabilizing template can affect the biosensor sensitivity is investigated. Furthermore, the effect of graphene oxide (GO) on the ratiometric behavior of nanoclusters is demonstrated and the concentration-/time-dependent new competitive mechanism between aggregation-caused quenching (ACQ) and aggregation-induced emission enhancement (AIE) for the developed ssDNA-AgNCs/GO nanohybrids is proposed. Finally, the performance of the designed ratiometric biosensor has been validated using the RNA extract obtained from more than 150 clinical samples, and the results have been confirmed by the FDA-approved reverse transcription-polymerase chain reaction (RT-PCR) diagnostic method. The diagnostic sensitivity and specificity of the best probe is more than >90%, with an area under the receiver operating characteristic (ROC) curve of 0.978.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor

          Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV). Based on the rapid increase in the rate of human infection, the World Health Organization (WHO) has classified the COVID-19 outbreak as a pandemic. Because no specific drugs or vaccines for COVID-19 are yet available, early diagnosis and management are crucial for containing the outbreak. Here, we report a field-effect transistor (FET)-based biosensing device for detecting SARS-CoV-2 in clinical samples. The sensor was produced by coating graphene sheets of the FET with a specific antibody against SARS-CoV-2 spike protein. The performance of the sensor was determined using antigen protein, cultured virus, and nasopharyngeal swab specimens from COVID-19 patients. Our FET device could detect the SARS-CoV-2 spike protein at concentrations of 1 fg/mL in phosphate-buffered saline and 100 fg/mL clinical transport medium. In addition, the FET sensor successfully detected SARS-CoV-2 in culture medium (limit of detection [LOD]: 1.6 × 101 pfu/mL) and clinical samples (LOD: 2.42 × 102 copies/mL). Thus, we have successfully fabricated a promising FET biosensor for SARS-CoV-2; our device is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection

            The ongoing outbreak of the novel coronavirus disease (COVID-19) has spread globally and poses a threat to public health in more than 200 countries. Reliable laboratory diagnosis of the disease has been one of the foremost priorities for promoting public health interventions. The routinely used reverse transcription polymerase chain reaction (RT-PCR) is currently the reference method for COVID-19 diagnosis. However, it also reported a number of false-positive or -negative cases, especially in the early stages of the novel virus outbreak. In this work, a dual-functional plasmonic biosensor combining the plasmonic photothermal (PPT) effect and localized surface plasmon resonance (LSPR) sensing transduction provides an alternative and promising solution for the clinical COVID-19 diagnosis. The two-dimensional gold nanoislands (AuNIs) functionalized with complementary DNA receptors can perform a sensitive detection of the selected sequences from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through nucleic acid hybridization. For better sensing performance, the thermoplasmonic heat is generated on the same AuNIs chip when illuminated at their plasmonic resonance frequency. The localized PPT heat is capable to elevate the in situ hybridization temperature and facilitate the accurate discrimination of two similar gene sequences. Our dual-functional LSPR biosensor exhibits a high sensitivity toward the selected SARS-CoV-2 sequences with a lower detection limit down to the concentration of 0.22 pM and allows precise detection of the specific target in a multigene mixture. This study gains insight into the thermoplasmonic enhancement and its applicability in the nucleic acid tests and viral disease diagnosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip

              A large-scale diagnosis of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is essential to downregulate its spread within as well as across communities and mitigate the current outbreak of the pandemic novel coronavirus disease 2019 (COVID-19). Herein, we report the development of a rapid (less than 5 min), low-cost, easy-to-implement, and quantitative paper-based electrochemical sensor chip to enable the digital detection of SARS-CoV-2 genetic material. The biosensor uses gold nanoparticles (AuNPs), capped with highly specific antisense oligonucleotides (ssDNA) targeting viral nucleocapsid phosphoprotein (N-gene). The sensing probes are immobilized on a paper-based electrochemical platform to yield a nucleic-acid-testing device with a readout that can be recorded with a simple hand-held reader. The biosensor chip has been tested using samples collected from Vero cells infected with SARS-CoV-2 virus and clinical samples. The sensor provides a significant improvement in output signal only in the presence of its target—SARS-CoV-2 RNA—within less than 5 min of incubation time, with a sensitivity of 231 (copies μL–1)−1 and limit of detection of 6.9 copies/μL without the need for any further amplification. The sensor chip performance has been tested using clinical samples from 22 COVID-19 positive patients and 26 healthy asymptomatic subjects confirmed using the FDA-approved RT-PCR COVID-19 diagnostic kit. The sensor successfully distinguishes the positive COVID-19 samples from the negative ones with almost 100% accuracy, sensitivity, and specificity and exhibits an insignificant change in output signal for the samples lacking a SARS-CoV-2 viral target segment (e.g., SARS-CoV, MERS-CoV, or negative COVID-19 samples collected from healthy subjects). The feasibility of the sensor even during the genomic mutation of the virus is also ensured from the design of the ssDNA-conjugated AuNPs that simultaneously target two separate regions of the same SARS-CoV-2 N-gene.
                Bookmark

                Author and article information

                Journal
                Anal Chem
                Anal Chem
                ac
                ancham
                Analytical Chemistry
                American Chemical Society
                0003-2700
                1520-6882
                13 December 2022
                27 December 2022
                : 94
                : 51
                : 17757-17769
                Affiliations
                []Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR , Tehran 1517964311, Iran
                []Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences , Isfahan 81746-73461, Iran
                [§ ]ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR , Tehran1517964311, Iran
                []Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University , Tehran 14115-111, Iran
                []Department of Chemistry, Razi University , Kermanshah 67144-14971, Iran
                [# ]Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University , Tehran 14115-111, Iran
                []Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences , Jahrom 74148-46199, Iran
                []Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences , Bojnurd 94149-74877, Iran
                Author notes
                Author information
                https://orcid.org/0000-0002-9242-9319
                https://orcid.org/0000-0002-0616-8870
                https://orcid.org/0000-0001-6560-4815
                https://orcid.org/0000-0002-9706-2560
                Article
                10.1021/acs.analchem.2c02189
                9762418
                36512507
                8dd95a65-11e2-49df-aaac-835fa9e7b686
                © 2022 American Chemical Society

                This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 21 May 2022
                : 28 November 2022
                Funding
                Funded by: Iran National Science Foundation, doi 10.13039/501100003968;
                Award ID: INSF-4000890
                Categories
                Article
                Custom metadata
                ac2c02189
                ac2c02189

                Analytical chemistry
                Analytical chemistry

                Comments

                Comment on this article