9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found

      Beneficial Effects of Vildagliptin on Retinal Injury in Obese Type 2 Diabetic Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Vildagliptin is an oral inhibitor of dipeptidyl peptidase-4, an enzyme mainly responsible for inactivating incretins, and one of the widely used drugs for the treatment of type 2 diabetes. However, effects of vildagliptin on retinal injury in diabetes remain unclear. We examined here whether oral administration of vildagliptin inhibited gene expression of inflammatory and thrombogenic parameters in Otsuka Long-Evans Tokushima Fatty rats (OLETF rats), an animal model of obese type 2 diabetes. Methods: OLETF rats at 22 weeks of age were given vehicle or 3 mg/kg of vildagliptin for another 10 weeks. Gene expression was analyzed in quantitative real-time reverse transcription-polymerase chain reaction. Results: Vildagliptin significantly inhibited the increase in body weight and decreased average fasting blood glucose in the OLETF rats. Compared with 22-week-old OLETF rats, gene expression levels of vascular endothelial growth factor, intercellular adhesion molecule-1, plasminogen activator inhibitor-1 and pigment epithelium-derived factor were significantly increased in the retinas of OLETF rats at 32 weeks of age, all of which were inhibited by treatment with vildagliptin. Conclusions: The present study demonstrated for the first time that vildagliptin inhibited inflammatory and thrombogenic reactions in the retinas of obese type 2 diabetic rats. Vildagliptin may play a protective role against diabetic retinopathy.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression.

          Glucagon-like peptide-1 (GLP-1) is one of the incretins, a gut hormone secreted from L cells in the intestine in response to food intake. It has been proposed as a potential therapeutic target for the treatment of patients with type 2 diabetes. However, the direct effects of GLP-1 on vascular injury in diabetes are largely unknown. Since there is a growing body of evidence that advanced glycation end products (AGE) and their receptor RAGE axis plays an important role in vascular complications in diabetes, this study investigated whether and how GLP-1 blocked the deleterious effects of AGE on human umbilical vein endothelial cells (HUVEC). GLP-1 receptor (GLP-1R) was expressed in HUVEC. GLP-1 dose-dependently inhibited RAGE gene expression in HUVEC, which was blocked by small interfering RNAs raised against GLP-1R. An analogue of cyclic AMP also decreased RAGE mRNA level in HUVEC. Further, GLP-1 decreased reactive oxygen species generation and subsequently reduced vascular cell adhesion molecule-1 mRNA levels in AGE-exposed HUVEC. Our present study suggests that GLP-1 directly acts on HUVEC via GLP-1R and it could work as an anti-inflammatory agent against AGE by reducing RAGE expression via activation of cyclic AMP pathways. Copyright 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression.

            Pigment epithelium-derived factor (PEDF) is the most potent inhibitor of angiogenesis, suggesting that loss of PEDF contributes to proliferative diabetic retinopathy. However, the role of PEDF against retinal vascular hyperpermeability remains to be elucidated. We investigated here whether and how PEDF could inhibit the advanced glycation end product (AGE) signaling to vascular hyperpermeability. Intravenous administration of AGEs to normal rats not only increased retinal vascular permeability by stimulating vascular endothelial growth factor (VEGF) expression but also decreased retinal PEDF levels. Simultaneous treatments with PEDF inhibited the AGE-elicited VEGF-mediated permeability by down-regulating mRNA levels of p22(phox) and gp91(phox), membrane components of NADPH oxidase, and subsequently decreasing retinal levels of an oxidative stress marker, 8-hydroxydeoxyguanosine. PEDF also inhibited the AGE-induced vascular hyperpermeability evaluated by transendothelial electrical resistance by suppressing VEGF expression. Furthermore, PEDF decreased reactive oxygen species (ROS) generation in AGE-exposed endothelial cells by suppressing NADPH oxidase activity via down-regulation of mRNA levels of p22(PHOX) and gp91(PHOX). This led to blockade of the AGE-elicited Ras activation and NF-kappaB-dependent VEGF gene induction in endothelial cells. These results indicate that the central mechanism for PEDF inhibition of the AGE signaling to vascular permeability is by suppression of NADPH oxidase-mediated ROS generation and subsequent VEGF expression. Substitution of PEDF may offer a promising strategy for halting the development of diabetic retinopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression.

              Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, contributes to diabetic nephropathy. We have found that glucagon-like peptide-1 (GLP-1) inhibits the AGE-induced inflammatory reactions in endothelial cells. However, effects of GLP-1 on the AGE-RAGE-ADMA axis are unknown. This study examined the effects of GLP-1 on reactive oxygen species (ROS) generation, gene expression of protein arginine methyltransfetase-1 (PRMT-1), an enzyme that mainly generates ADMA, and ADMA levels in human proximal tubular cells. Streptozotocin-induced diabetic rats received continuous i.p. infusion of 0.3 μg of vehicle or 1.5 μg of the GLP-1 analog exendin-4 per kilogram of body weight for 2 weeks. We further investigated whether and how exendin-4 treatment reduced ADMA levels and renal damage in streptozotocin-induced diabetic rats. GLP-1 inhibited the AGE-induced RAGE and PRMT-1 gene expression, ROS, and ADMA generation in tubular cells, which were blocked by small-interfering RNAs raised against GLP-1 receptor. Exendin-4 treatment decreased gene expression of Rage, Prmt-1, Icam-1, and Mcp-1 and ADMA level; reduced urinary excretions of 8-hydroxy-2'-deoxyguanosine and albumin; and improved histopathologic changes of the kidney in diabetic rats. Our present study suggests that GLP-1 receptor agonist may inhibit the AGE-RAGE-mediated ADMA generation by suppressing PRMT-1 expression via inhibition of ROS generation, thereby protecting against the development and progression of diabetic nephropathy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                ORE
                Ophthalmic Res
                10.1159/issn.0030-3747
                Ophthalmic Research
                S. Karger AG
                0030-3747
                1423-0259
                2013
                November 2013
                25 September 2013
                : 50
                : 4
                : 221-226
                Affiliations
                Departments of aOphthalmology and bPathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
                Author notes
                *Dr. Sho-ichi Yamagishi, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan), E-Mail shoichi@med.kurume-u.ac.jp
                Article
                354116 Ophthalmic Res 2013;50:221-226
                10.1159/000354116
                24081217
                8e150897-1691-47b5-9eca-fc32b4ffa86b
                © 2013 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 01 March 2013
                : 20 June 2013
                Page count
                Figures: 2, Tables: 1, Pages: 6
                Categories
                Short Communication

                Vision sciences,Ophthalmology & Optometry,Pathology
                Intercellular adhesion molecule-1,Vildagliptin,Vascular endothelial growth factor,Diabetic retinopathy,Advanced glycation end product

                Comments

                Comment on this article