39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The ubiquitin proteasome system in neuropathology

      review-article
      Acta Neuropathologica
      Springer-Verlag

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          A role for ubiquitin in selective autophagy.

          Ubiquitination is the hallmark of protein degradation by the 26S proteasome. However, the proteasome is limited in its capacity to degrade oligomeric and aggregated proteins. Removal of harmful protein aggregates is mediated by autophagy, a mechanism by which the cell sequesters cytosolic cargo and delivers it for degradation by the lysosome. Identification of autophagy receptors, such as p62/SQSTM1 and NBR1, which simultaneously bind both ubiquitin and autophagy-specific ubiquitin-like modifiers, LC3/GABARAP, has provided a molecular link between ubiquitination and autophagy. This review explores the hypothesis that ubiquitin represents a selective degradation signal suitable for targeting various types of cargo, ranging from protein aggregates to membrane-bound organelles and microbes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis.

            The tumour-suppressor phosphatase with tensin homology (PTEN) is the most important negative regulator of the cell-survival signalling pathway initiated by phosphatidylinositol 3-kinase (PI3K). Although PTEN is mutated or deleted in many tumours, deregulation of the PI3K-PTEN network also occurs through other mechanisms. Crosstalk between the PI3K pathways and other tumorigenic signalling pathways, such as those that involve Ras, p53, TOR (target of rapamycin) or DJ1, can contribute to this deregulation. How does the PI3K pathway integrate signals from numerous sources, and how can this information be used in the rational design of cancer therapies?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase.

              Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the transition from the G1 phase to the S phase of the cell cycle. The amount of cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiquitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast, flies, and mammals. Fbw7 associates specifically with phosphorylated cyclin E, and SCFFbw7 catalyzes cyclin E ubiquitination in vitro. Depletion of Fbw7 leads to accumulation and stabilization of cyclin E in vivo in human and Drosophila melanogaster cells. Multiple F-box proteins contribute to cyclin E stability in yeast, suggesting an overlap in SCF E3 ligase specificity that allows combinatorial control of cyclin E degradation.
                Bookmark

                Author and article information

                Contributors
                nllehman@yahoo.com
                Journal
                Acta Neuropathol
                Acta Neuropathologica
                Springer-Verlag (Berlin/Heidelberg )
                0001-6322
                1432-0533
                14 July 2009
                September 2009
                : 118
                : 3
                : 329-347
                Affiliations
                Department of Pathology and Laboratory Medicine, Hermelin Brain Tumor Center, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI 48202 USA
                Article
                560
                10.1007/s00401-009-0560-x
                2716447
                19597829
                8e16cbb9-0c95-4ae1-8174-026bb91e981e
                © The Author(s) 2009
                History
                : 6 May 2009
                : 10 June 2009
                : 11 June 2009
                Categories
                Review
                Custom metadata
                © Springer-Verlag 2009

                Neurology
                Neurology

                Comments

                Comment on this article