25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanoscale mapping of ion diffusion in a lithium-ion battery cathode.

      Nature nanotechnology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The movement of lithium ions into and out of electrodes is central to the operation of lithium-ion batteries. Although this process has been extensively studied at the device level, it remains insufficiently characterized at the nanoscale level of grain clusters, single grains and defects. Here, we probe the spatial variation of lithium-ion diffusion times in the battery-cathode material LiCoO(2) at a resolution of ∼100 nm by using an atomic force microscope to both redistribute lithium ions and measure the resulting cathode deformation. The relationship between diffusion and single grains and grain boundaries is observed, revealing that the diffusion coefficient increases for certain grain orientations and single-grain boundaries. This knowledge provides feedback to improve understanding of the nanoscale mechanisms underpinning lithium-ion battery operation.

          Related collections

          Author and article information

          Journal
          20802493
          10.1038/nnano.2010.174

          Comments

          Comment on this article