14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Decline in Benthic Foraminifera following the Deepwater Horizon Event in the Northeastern Gulf of Mexico

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sediment cores were collected from three sites (1000–1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies ( 210Pb, 234Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80–93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera ( Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2–3 times background) in PAH’s, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico.

          Methane was the most abundant hydrocarbon released during the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Beyond relevancy to this anthropogenic event, this methane release simulates a rapid and relatively short-term natural release from hydrates into deep water. Based on methane and oxygen distributions measured at 207 stations throughout the affected region, we find that within ~120 days from the onset of release ~3.0 × 10(10) to 3.9 × 10(10) moles of oxygen were respired, primarily by methanotrophs, and left behind a residual microbial community containing methanotrophic bacteria. We suggest that a vigorous deepwater bacterial bloom respired nearly all the released methane within this time, and that by analogy, large-scale releases of methane from hydrate in the deep ocean are likely to be met by a similarly rapid methanotrophic response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida.

            Benthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulate and respire nitrates through denitrification. The widespread occurrence among distantly related organisms suggests an ancient origin of the trait. The diverse metabolic capacity of these organisms, which enables them to respire with oxygen and nitrate and to sustain respiratory activity even when electron acceptors are absent from the environment, may be one of the reasons for their successful colonization of diverse marine sediment environments. The contribution of eukaryotes to the removal of fixed nitrogen by respiration may equal the importance of bacterial denitrification in ocean sediments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution.

              Detailed airborne, surface, and subsurface chemical measurements, primarily obtained in May and June 2010, are used to quantify initial hydrocarbon compositions along different transport pathways (i.e., in deep subsurface plumes, in the initial surface slick, and in the atmosphere) during the Deepwater Horizon oil spill. Atmospheric measurements are consistent with a limited area of surfacing oil, with implications for leaked hydrocarbon mass transport and oil drop size distributions. The chemical data further suggest relatively little variation in leaking hydrocarbon composition over time. Although readily soluble hydrocarbons made up ∼25% of the leaking mixture by mass, subsurface chemical data show these compounds made up ∼69% of the deep plume mass; only ∼31% of the deep plume mass was initially transported in the form of trapped oil droplets. Mass flows along individual transport pathways are also derived from atmospheric and subsurface chemical data. Subsurface hydrocarbon composition, dissolved oxygen, and dispersant data are used to assess release of hydrocarbons from the leaking well. We use the chemical measurements to estimate that (7.8 ± 1.9) × 10(6) kg of hydrocarbons leaked on June 10, 2010, directly accounting for roughly three-quarters of the total leaked mass on that day. The average environmental release rate of (10.1 ± 2.0) × 10(6) kg/d derived using atmospheric and subsurface chemical data agrees within uncertainties with the official average leak rate of (10.2 ± 1.0) × 10(6) kg/d derived using physical and optical methods.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 March 2015
                2015
                : 10
                : 3
                : e0120565
                Affiliations
                [1 ]College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
                [2 ]Eckerd College, Saint Petersburg, Florida, United States of America
                ufrj, BRAZIL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PS IR GB DWH RL DJH. Performed the experiments: PS IR RL. Analyzed the data: PS IR GB DWH RL DJH. Contributed reagents/materials/analysis tools: PS IR GB DWH RL DJH. Wrote the paper: PS.

                Article
                PONE-D-14-43055
                10.1371/journal.pone.0120565
                4364910
                25785988
                8eb7a5b4-7a09-4c1a-aecf-f1fc780ad018
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 30 September 2014
                : 24 January 2015
                Page count
                Figures: 5, Tables: 3, Pages: 22
                Funding
                This research received funding from these sources: The British Petroleum/Florida Institute of Oceanography (BP/FIO)-Gulf Oil Spill Prevention, Response, and Recovery Grants Program provided funding for several of the initial research cruises and laboratory analyses during 2010 and 2011. http://www.fio.usf.edu (PS, IR, GB, DWH, RL, DJH). The Gulf of Mexico Research Initiative (GOMRI), specifically the Center for Integrated Modeling and Analysis of the Gulf Ecosystem (C-IMAGE) and the Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico (Deep-C) consortia, provided funding in support of field, laboratory, and personnel efforts. http://gulfresearchinitiative.org (PS, IR, GB, DWH, RL, DJH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                Data are available from the Gulf of Mexico Research Initiative Information & Data Cooperative: https://data.gulfresearchinitiative.org/. doi: 10.7266/N79021PB.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article