14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Predictive computational modelling in biomedical research offers the potential to integrate diverse data, uncover biological mechanisms that are not easily accessible through experimental methods and expose gaps in knowledge requiring further research. Recent developments in computing and diagnostic technologies have initiated the advancement of computational models in terms of complexity and specificity. Consequently, computational modelling can increasingly be utilised as enabling and complementing modality in the clinic—with medical decisions and interventions being personalised. Myocardial infarction and heart failure are amongst the leading causes of death globally despite optimal modern treatment. The development of novel MI therapies is challenging and may be greatly facilitated through predictive modelling. Here, we review the advances in patient-specific modelling of cardiac mechanics, distinguishing specificity in cardiac geometry, myofibre architecture and mechanical tissue properties. Thereafter, the focus narrows to the mechanics of the infarcted heart and treatment of myocardial infarction with particular attention on intramyocardial biomaterial delivery.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Heart repair by reprogramming non-myocytes with cardiac transcription factors

          The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reprogramming of human fibroblasts toward a cardiac fate.

            Reprogramming of mouse fibroblasts toward a myocardial cell fate by forced expression of cardiac transcription factors or microRNAs has recently been demonstrated. The potential clinical applicability of these findings is based on the minimal regenerative potential of the adult human heart and the limited availability of human heart tissue. An initial but mandatory step toward clinical application of this approach is to establish conditions for conversion of adult human fibroblasts to a cardiac phenotype. Toward this goal, we sought to determine the optimal combination of factors necessary and sufficient for direct myocardial reprogramming of human fibroblasts. Here we show that four human cardiac transcription factors, including GATA binding protein 4, Hand2, T-box5, and myocardin, and two microRNAs, miR-1 and miR-133, activated cardiac marker expression in neonatal and adult human fibroblasts. After maintenance in culture for 4-11 wk, human fibroblasts reprogrammed with these proteins and microRNAs displayed sarcomere-like structures and calcium transients, and a small subset of such cells exhibited spontaneous contractility. These phenotypic changes were accompanied by expression of a broad range of cardiac genes and suppression of nonmyocyte genes. These findings indicate that human fibroblasts can be reprogrammed to cardiac-like myocytes by forced expression of cardiac transcription factors with muscle-specific microRNAs and represent a step toward possible therapeutic application of this reprogramming approach.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-heart modeling: applications to cardiac electrophysiology and electromechanics.

              Recent developments in cardiac simulation have rendered the heart the most highly integrated example of a virtual organ. We are on the brink of a revolution in cardiac research, one in which computational modeling of proteins, cells, tissues, and the organ permit linking genomic and proteomic information to the integrated organ behavior, in the quest for a quantitative understanding of the functioning of the heart in health and disease. The goal of this review is to assess the existing state-of-the-art in whole-heart modeling and the plethora of its applications in cardiac research. General whole-heart modeling approaches are presented, and the applications of whole-heart models in cardiac electrophysiology and electromechanics research are reviewed. The article showcases the contributions that whole-heart modeling and simulation have made to our understanding of the functioning of the heart. A summary of the future developments envisioned for the field of cardiac simulation and modeling is also presented. Biophysically based computational modeling of the heart, applied to human heart physiology and the diagnosis and treatment of cardiac disease, has the potential to dramatically change 21st century cardiac research and the field of cardiology.
                Bookmark

                Author and article information

                Contributors
                Journal
                9612481
                21930
                Heart Fail Rev
                Heart Fail Rev
                Heart failure reviews
                1382-4147
                1573-7322
                6 February 2016
                November 2016
                01 November 2016
                : 21
                : 6
                : 815-826
                Affiliations
                [1 ]Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, 7935 Observatory, South Africa
                [2 ]Cardiovascular Research Unit, MRC IUCHRU, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
                [3 ]Department of Surgery, University of California at San Francisco, San Francisco, CA, USA
                Article
                NIHMS757323
                10.1007/s10741-016-9528-9
                4969231
                26833320
                8ebf771d-af58-4d39-a399-2ec78edd9529

                This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Categories
                Article

                Cardiovascular Medicine
                cardiac disease,finite-element method,subject specific,computational model,ischaemic heart disease,heart failure

                Comments

                Comment on this article