Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Non-optimal codon usage is a mechanism to achieve circadian clock conditionality

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circadian rhythms are oscillations in biological processes that function as a key adaptation to the daily rhythms of most environments. In the model cyanobacterial circadian clock system, the core oscillator proteins are encoded by the gene cluster kaiABC 1 . Genes with high expression and functional importance like the kai genes are usually encoded by optimal codons, yet the codon usage bias of the kaiBC genes is not optimized for translational efficiency. We discovered a relationship between codon usage and a general property of circadian rhythms called conditionality; namely, that endogenous rhythmicity is robustly expressed under some environmental conditions but not under others 2 . Despite the generality of circadian conditionality, however, its molecular basis is unknown for any system. Here we show that non-optimal codon usage was selected as a post-transcriptional mechanism to switch between circadian and non-circadian regulation of gene expression as an adaptive response to environmental conditions. When the kaiBC sequence was experimentally optimized to enhance expression of the KaiB and KaiC proteins, intrinsic rhythmicity was enhanced at cool temperatures that are experienced by this organism in its natural habitat. However, fitness at those temperatures was highest in cells whose endogenous rhythms were suppressed at cool temperatures as compared with cells exhibiting high-amplitude rhythmicity. These results indicate natural selection against circadian systems in cyanobacteria that are intrinsically robust at cool temperatures. Modulation of circadian amplitude is therefore critical to its adaptive significance 3 . Moreover, these results show the direct effects of codon usage on a complex phenotype and organismal fitness. Our work also challenges the long-standing view of directional selection towards optimal codons 47 , and provides a key example of natural selection against optimal codon to achieve adaptive responses to environmental changes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications.

          P. Sharp, W Li (1987)
          A simple, effective measure of synonymous codon usage bias, the Codon Adaptation Index, is detailed. The index uses a reference set of highly expressed genes from a species to assess the relative merits of each codon, and a score for a gene is calculated from the frequency of use of all codons in that gene. The index assesses the extent to which selection has been effective in moulding the pattern of codon usage. In that respect it is useful for predicting the level of expression of a gene, for assessing the adaptation of viral genes to their hosts, and for making comparisons of codon usage in different organisms. The index may also give an approximate indication of the likely success of heterologous gene expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution.

            Strikingly consistent correlations between rates of coding-sequence evolution and gene expression levels are apparent across taxa, but the biological causes behind the selective pressures on coding-sequence evolution remain controversial. Here, we demonstrate conserved patterns of simple covariation between sequence evolution, codon usage, and mRNA level in E. coli, yeast, worm, fly, mouse, and human that suggest that all observed trends stem largely from a unified underlying selective pressure. In metazoans, these trends are strongest in tissues composed of neurons, whose structure and lifetime confer extreme sensitivity to protein misfolding. We propose, and demonstrate using a molecular-level evolutionary simulation, that selection against toxicity of misfolded proteins generated by ribosome errors suffices to create all of the observed covariation. The mechanistic model of molecular evolution that emerges yields testable biochemical predictions, calls into question the use of nonsynonymous-to-synonymous substitution ratios (Ka/Ks) to detect functional selection, and suggests how mistranslation may contribute to neurodegenerative disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system.

                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                5 February 2013
                17 February 2013
                7 March 2013
                07 September 2013
                : 495
                : 7439
                : 116-120
                Affiliations
                [1 ]Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 USA
                [2 ]Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
                [3 ]Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
                Author notes
                [* ]corresponding author: Dr. Carl Johnson, Dept. of Biological Sciences, Vanderbilt University, 465 21st Ave. South, Nashville, TN 37235 USA, TEL: 615-322-2384, FAX: 615-936-0205, carl.h.johnson@ 123456vanderbilt.edu
                Article
                NIHMS440833
                10.1038/nature11942
                3593822
                23417065
                8ed5d789-890a-48c8-b69b-b5f7f942a3a1

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM088595 || GM
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM067152 || GM
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article