50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DeviceEditor visual biological CAD canvas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Biological Computer Aided Design (bioCAD) assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly.

          Results

          We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs.

          Conclusions

          DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Engineering BioBrick vectors from BioBrick parts

          Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have been contributed to, and are available from, the Registry of Standard Biological Parts. Results Here we extended the same advantages of BioBrick standard biological parts to the plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick parts that encode many useful vector functions. We combined the new parts to make a BioBrick base vector that facilitates BioBrick vector construction. We demonstrated the utility of the process by constructing seven new BioBrick vectors. We also successfully used the resulting vectors to assemble and propagate other BioBrick standard biological parts. Conclusion We extended the principles of part reuse and standardization to BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced from all existing and newly designed BioBrick parts. We invite the synthetic biology community to (1) use the process to make and share new BioBrick vectors; (2) expand the current collection of BioBrick vector parts; and (3) characterize and improve the available collection of BioBrick vector parts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            BglBrick vectors and datasheets: A synthetic biology platform for gene expression

            Background As engineered biological systems become more complex, it is increasingly common to express multiple operons from different plasmids and inducible expression systems within a single host cell. Optimizing such systems often requires screening combinations of origins of replication, expression systems, and antibiotic markers. This procedure is hampered by a lack of quantitative data on how these components behave when more than one origin of replication or expression system are used simultaneously. Additionally, this process can be time consuming as it often requires the creation of new vectors or cloning into existing but disparate vectors. Results Here, we report the development and characterization of a library of expression vectors compatible with the BglBrick standard (BBF RFC 21). We have designed and constructed 96 BglBrick-compatible plasmids with a combination of replication origins, antibiotic resistance genes, and inducible promoters. These plasmids were characterized over a range of inducer concentrations, in the presence of non-cognate inducer molecules, and with several growth media, and their characteristics were documented in a standard format datasheet. A three plasmid system was used to investigate the impact of multiple origins of replication on plasmid copy number. Conclusions The standardized collection of vectors presented here allows the user to rapidly construct and test the expression of genes with various combinations of promoter strength, inducible expression system, copy number, and antibiotic resistance. The quantitative datasheets created for these vectors will increase the predictability of gene expression, especially when multiple plasmids and inducers are utilized.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries.

              High-throughput genomics, proteomics and synthetic biology studies require ever more efficient and economical strategies to clone complex DNA libraries or variants of biological modules. In this paper, we provide a protocol for a sequence-independent approach for cloning complex individual or combinatorial DNA libraries, and routine or high-throughput cloning of single or multiple DNA fragments. The strategy, called circular polymerase extension cloning (CPEC), is based on polymerase overlap extension and is therefore free of restriction digestion, ligation or single-stranded homologous recombination. CPEC is highly efficient, accurate and user friendly. Once the inserts and the linear vector have been prepared, the CPEC reaction can be completed in 10 min to 3 h, depending on the complexity of the gene libraries.
                Bookmark

                Author and article information

                Journal
                J Biol Eng
                J Biol Eng
                Journal of Biological Engineering
                BioMed Central
                1754-1611
                2012
                28 February 2012
                : 6
                : 1
                Affiliations
                [1 ]Fuels Synthesis Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
                [2 ]Physical Bioscience Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
                [3 ]Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
                [4 ]Sandia National Laboratories, Livermore, CA 94550, USA
                [5 ]Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
                [6 ]Department of Bioengineering, University of California, Berkeley, USA
                Article
                1754-1611-6-1
                10.1186/1754-1611-6-1
                3317443
                22373390
                8efe7d8d-297f-478e-8cde-d520d072daf1
                Copyright ©2012 Chen et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 November 2011
                : 28 February 2012
                Categories
                Research

                Biotechnology
                biocad,design specification rules,combinatorial library,visual design abstraction,dna assembly,correct-by-construction design

                Comments

                Comment on this article