5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Memristive Devices for New Computing Paradigms

      1 , 1 , 1
      Advanced Intelligent Systems

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In complementary metal–oxide–semiconductor (CMOS)‐based von Neumann architectures, the intrinsic power and speed inefficiencies are worsened by the drastic increase in information with big data. With the potential to store numerous values in IV pinched hysteresis, memristors (memory resistors) have emerged as alternatives to existing CMOS‐based computing systems. Herein, four types of memristive devices, namely, resistive switching, phase‐change, spintronics, and ferroelectric tunnel junction memristors, are explored. The application of these devices to a crossbar array (CBA), which is a novel concept of integrated architecture, is a step toward the realization of ultradense electronics. Exploiting the fascinating capabilities of memristive devices, computing systems can be developed with novel computing paradigms, in which large amounts of data can be stored and processed within CBAs. Looking further ahead, the ways in which memristors could be incorporated in neuromorphic computing systems along with various artificial intelligence algorithms are established. Finally, perspectives and challenges that memristor technology should address to provide excellent alternatives to existing computing systems are discussed. The infinite potential of memristors is the key to unlock new computing paradigms, which pave the way for next‐generation computing systems.

          Related collections

          Most cited references184

          • Record: found
          • Abstract: not found
          • Article: not found

          Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A survey on deep learning in medical image analysis

            Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A logical calculus of the ideas immanent in nervous activity

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Intelligent Systems
                Advanced Intelligent Systems
                2640-4567
                2640-4567
                November 2020
                August 02 2020
                November 2020
                : 2
                : 11
                Affiliations
                [1 ] Department of Materials Science and Engineering Research Institute of Advanced Materials Seoul National University Seoul 08826 Republic of Korea
                Article
                10.1002/aisy.202000105
                8f63e3eb-041c-4fd2-adcd-078584fc500b
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article