39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We show that elevated levels of Ret receptor are found in different sub-types of human breast cancers and that high Ret correlates with decreased metastasis-free survival. The role of Ret in ER+ breast cancer models was explored combining in vitro and in vivo approaches. Our analyses revealed that ligand-induced Ret activation: (i) stimulates migration of breast cancer cells; (ii) rescues cells from anti-proliferative effects of endocrine treatment and (iii) stimulates expression of cytokines in the presence of endocrine agents. Indeed, we uncovered a positive feed-forward loop between the inflammatory cytokine IL6 and Ret that links them at the expression and the functional level. In vivo inhibition of Ret in a metastatic breast cancer model inhibits tumour outgrowth and metastatic potential. Ret inhibition blocks the feed-forward loop by down-regulating Ret levels, as well as decreasing activity of Fak, an integrator of IL6-Ret signalling. Our results suggest that Ret kinase should be considered as a novel therapeutic target in subsets of breast cancer.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          RET, ROS1 and ALK fusions in lung cancer.

          Through an integrated molecular- and histopathology-based screening system, we performed a screening for fusions of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1, receptor tyrosine kinase (ROS1) in 1,529 lung cancers and identified 44 ALK-fusion-positive and 13 ROS1-fusion-positive adenocarcinomas, including for unidentified fusion partners for ROS1. In addition, we discovered previously unidentified kinase fusions that may be promising for molecular-targeted therapy, kinesin family member 5B (KIF5B)-ret proto-oncogene (RET) and coiled-coil domain containing 6 (CCDC6)-RET, in 14 adenocarcinomas. A multivariate analysis of 1,116 adenocarcinomas containing these 71 kinase-fusion-positive adenocarcinomas identified four independent factors that are indicators of poor prognosis: age ≥ 50 years, male sex, high pathological stage and negative kinase-fusion status.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diverse somatic mutation patterns and pathway alterations in human cancers.

            The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              KIF5B-RET fusions in lung adenocarcinoma.

              We identified in-frame fusion transcripts of KIF5B (the kinesin family 5B gene) and the RET oncogene, which are present in 1-2% of lung adenocarcinomas (LADCs) from people from Japan and the United States, using whole-transcriptome sequencing. The KIF5B-RET fusion leads to aberrant activation of RET kinase and is considered to be a new driver mutation of LADC because it segregates from mutations or fusions in EGFR, KRAS, HER2 and ALK, and a RET tyrosine kinase inhibitor, vandetanib, suppresses the fusion-induced anchorage-independent growth activity of NIH3T3 cells.
                Bookmark

                Author and article information

                Journal
                EMBO Mol Med
                EMBO Mol Med
                emmm
                EMBO Molecular Medicine
                Blackwell Publishing Ltd
                1757-4676
                1757-4684
                September 2013
                19 July 2013
                : 5
                : 9
                : 1335-1350
                Affiliations
                [1 ]Friedrich Miescher Institute for Biomedical Research (FMI) Basel, Switzerland
                [2 ]Department of Obstetrics and Gynecology and Comprehensive Cancer Center (CCC), Medical University of Vienna Vienna, Austria
                [3 ]Edinburgh Cancer Research UK Centre, College of Medicine and Veterinary Medicine, University of Edinburgh Edinburgh, UK
                [4 ]Ludwig Boltzmann Institute for Cancer Research (LBI-CR) Vienna, Austria
                [5 ]Clinical Institute of Pathology, Medical University of Vienna Vienna, Austria
                [6 ]Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School Boston, MA, USA
                [7 ]University Basel Basel, Switzerland
                Author notes
                * Corresponding author: Tel: +41 61 697 8107; Fax: +41 61 697 3976; E-mail: nancy.hynes@ 123456fmi.ch
                [†]

                Present address: Cardiovascular and Metabolic DTA, F.Hoffmann-La Roche Ltd, Basel, Switzerland

                Article
                10.1002/emmm.201302625
                3799490
                23868506
                8fda897a-3dc6-4648-b4d7-b70786b8bfa4
                © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 11 February 2013
                : 29 May 2013
                : 17 June 2013
                Categories
                Research Articles

                Molecular medicine
                endocrine-therapy,fak,il6,metastasis,ret
                Molecular medicine
                endocrine-therapy, fak, il6, metastasis, ret

                Comments

                Comment on this article