7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Carbonate phosphonium salts as catalysts for the transesterification of dialkyl carbonates with diols. The competition between cyclic carbonates and linear dicarbonate products.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At 90-120 °C, in the presence of methylcarbonate and bicarbonate methyltrioctylphosphonium salts as catalysts ([P8881][A]; [A] = MeOCO2 and HOCO2), the transesterification of non-toxic dimethyl- and diethyl-carbonate (DMC and DEC, respectively) with 1,X-diols (2 ≤ X ≤ 6) proceeds towards the formation of cyclic and linear products. In particular, 1,2-propanediol and ethylene glycol afford propylene- and ethylene-carbonate with selectivity and yields up to 95 and 90%, respectively; while, the reaction of DMC with higher diols such 1,3-butanediol, 2-methyl-1,3-propanediol, 1,3-propanediol, 2,2-dimethyl, 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol produce linear C8-C10 dicarbonates of general formula MeOC(O)O∼∼∼OC(O)OMe as the almost exclusive products. Of note, these dicarbonate derivatives are not otherwise accessible in good yields by other conventional base catalyzed methods. Among 1,3-diols, the only exception was 2-methyl 2,4-pentandiol that yields the corresponding cyclic carbonate, i.e. 4,4,6-trimethyl-1,3-dioxan-2-one. In no one case, polycarbonates are observed. Such remarkable differences of product distributions are ascribed to the structure (branching and relative position of OH groups) of diols and to the role of cooperative (nucleophilic and electrophilic) catalysis which has been proved for onium salts. The investigated carbonate salts are not only effective in amounts as low as 0.5 mol%, but they are highly stable and recyclable.

          Related collections

          Author and article information

          Journal
          Org. Biomol. Chem.
          Organic & biomolecular chemistry
          Royal Society of Chemistry (RSC)
          1477-0539
          1477-0520
          Jun 28 2014
          : 12
          : 24
          Affiliations
          [1 ] Department of Molecular Sciences and Nanosystems, Centre for Sustainable Technologies, Università Ca' Foscari Venezia, Calle Larga S. Marta, 2137-30123 - Venezia, Italy. selva@unive.it.
          Article
          10.1039/c4ob00655k
          24825024
          90c8ecaf-e948-4883-aa96-e37e5a010ca3
          History

          Comments

          Comment on this article