22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A mutational signature in gastric cancer suggests therapeutic strategies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Targeting defects in the DNA repair machinery of neoplastic cells, for example, those due to inactivating BRCA1 and/or BRCA2 mutations, has been used for developing new therapies in certain types of breast, ovarian and pancreatic cancers. Recently, a mutational signature was associated with failure of double-strand DNA break repair by homologous recombination based on its high mutational burden in samples harbouring BRCA1 or BRCA2 mutations. In pancreatic cancer, all responders to platinum therapy exhibit this mutational signature including a sample that lacked any defects in BRCA1 or BRCA2. Here, we examine 10,250 cancer genomes across 36 types of cancer and demonstrate that, in addition to breast, ovarian and pancreatic cancers, gastric cancer is another cancer type that exhibits this mutational signature. Our results suggest that 7–12% of gastric cancers have defective double-strand DNA break repair by homologous recombination and may benefit from either platinum therapy or PARP inhibitors.

          Abstract

          Cancer genome analysis has demonstrated that some breast and ovarian tumours show reduced homologous recombination, a feature that can be therapeutically exploited. Here, Alexandrov et al. search for this mutational signature in 36 different cancer types and find that some gastric tumours also harbour this mutational spectrum.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium.

          The contribution of BRCA1 and BRCA2 to inherited breast cancer was assessed by linkage and mutation analysis in 237 families, each with at least four cases of breast cancer, collected by the Breast Cancer Linkage Consortium. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16% (95% confidence interval [CI] 6%-28%), suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority of families with male and female breast cancer were due to BRCA2 (76%). The largest proportion (67%) of families due to other genes was found in families with four or five cases of female breast cancer only. These estimates were not substantially affected either by changing the assumed penetrance model for BRCA1 or by including or excluding BRCA1 mutation data. Among those families with disease due to BRCA1 that were tested by one of the standard screening methods, mutations were detected in the coding sequence or splice sites in an estimated 63% (95% CI 51%-77%). The estimated sensitivity was identical for direct sequencing and other techniques. The penetrance of BRCA2 was estimated by maximizing the LOD score in BRCA2-mutation families, over all possible penetrance functions. The estimated cumulative risk of breast cancer reached 28% (95% CI 9%-44%) by age 50 years and 84% (95% CI 43%-95%) by age 70 years. The corresponding ovarian cancer risks were 0.4% (95% CI 0%-1%) by age 50 years and 27% (95% CI 0%-47%) by age 70 years. The lifetime risk of breast cancer appears similar to the risk in BRCA1 carriers, but there was some suggestion of a lower risk in BRCA2 carriers <50 years of age.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensing and repairing DNA double-strand breaks.

            The DNA double-strand break (DSB) is the principle cytotoxic lesion for ionizing radiation and radio-mimetic chemicals but can also be caused by mechanical stress on chromosomes or when a replicative DNA polymerase encounters a DNA single-strand break or other type of DNA lesion. DSBs also occur as intermediates in various biological events, such as V(D)J recombination in developing lymphoid cells. Inaccurate repair or lack of repair of a DSB can lead to mutations or to larger-scale genomic instability through the generation of dicentric or acentric chromosomal fragments. Such genome changes may have tumourigenic potential. In other instances, DSBs can be sufficient to induce apoptosis. Because of the threats posed by DSBs, eukaryotic cells have evolved complex and highly conserved systems to rapidly and efficiently detect these lesions, signal their presence and bring about their repair. Here, I provide an overview of these systems, with particular emphasis on the two major pathways of DSB repair: non-homologous end-joining and homologous recombination. Inherited or acquired defects in these pathways may lead to cancer or to other human diseases, and may affect the sensitivity of patients or tumour cells to radiotherapy and certain chemotherapies. An increased knowledge of DSB repair and of other DNA DSB responses may therefore provide opportunities for developing more effective treatments for cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mutational signatures: the patterns of somatic mutations hidden in cancer genomes☆

              All cancers originate from a single cell that starts to behave abnormally due to the acquired somatic mutations in its genome. Until recently, the knowledge of the mutational processes that cause these somatic mutations has been very limited. Recent advances in sequencing technologies and the development of novel mathematical approaches have allowed deciphering the patterns of somatic mutations caused by different mutational processes. Here, we summarize our current understanding of mutational patterns and mutational signatures in light of both the somatic cell paradigm of cancer research and the recent developments in the field of cancer genomics.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                29 October 2015
                2015
                : 6
                : 8683
                Affiliations
                [1 ]Cancer Genome Project, Wellcome Trust Sanger Institute , Hinxton, Cambridgeshire CB10 1SA, UK
                [2 ]Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory , Los Alamos, New Mexico 87545, USA
                [3 ]Center for Nonlinear Studies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, USA
                [4 ]Department of Medical Genetics, Addenbrooke's Hospital National Health Service (NHS) Trust , Cambridge CB2 0QQ, UK
                [5 ]Department of Pathology, The University of Hong Kong, Queen Mary Hospital , Pokfulam, Hong Kong
                Author notes
                Author information
                http://orcid.org/0000-0003-3596-4515
                Article
                ncomms9683
                10.1038/ncomms9683
                4918743
                26511885
                914a5aca-e7d4-457f-aee6-424333b665fa
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 06 August 2015
                : 18 September 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article