26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Imitation of novel conspecific and human speech sounds in the killer whale ( Orcinus orca )

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1201051e259">Vocal imitation is a hallmark of human spoken language, which, along with other advanced cognitive skills, has fuelled the evolution of human culture. Comparative evidence has revealed that although the ability to copy sounds from conspecifics is mostly uniquely human among primates, a few distantly related taxa of birds and mammals have also independently evolved this capacity. Remarkably, field observations of killer whales have documented the existence of group-differentiated vocal dialects that are often referred to as traditions or cultures and are hypothesized to be acquired non-genetically. Here we use a <i>do-as-I-do</i> paradigm to study the abilities of a killer whale to imitate novel sounds uttered by conspecific (vocal imitative learning) and human models (vocal mimicry). We found that the subject made recognizable copies of all familiar and novel conspecific and human sounds tested and did so relatively quickly (most during the first 10 trials and three in the first attempt). Our results lend support to the hypothesis that the vocal variants observed in natural populations of this species can be socially learned by imitation. The capacity for vocal imitation shown in this study may scaffold the natural vocal traditions of killer whales in the wild. </p>

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The cultural niche: why social learning is essential for human adaptation.

          In the last 60,000 y humans have expanded across the globe and now occupy a wider range than any other terrestrial species. Our ability to successfully adapt to such a diverse range of habitats is often explained in terms of our cognitive ability. Humans have relatively bigger brains and more computing power than other animals, and this allows us to figure out how to live in a wide range of environments. Here we argue that humans may be smarter than other creatures, but none of us is nearly smart enough to acquire all of the information necessary to survive in any single habitat. In even the simplest foraging societies, people depend on a vast array of tools, detailed bodies of local knowledge, and complex social arrangements and often do not understand why these tools, beliefs, and behaviors are adaptive. We owe our success to our uniquely developed ability to learn from others. This capacity enables humans to gradually accumulate information across generations and develop well-adapted tools, beliefs, and practices that are too complex for any single individual to invent during their lifetime.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The different roles of social learning in vocal communication.

            While vocal learning has been studied extensively in birds and mammals, little effort has been made to define what exactly constitutes vocal learning and to classify the forms that it may take. We present such a theoretical framework for the study of social learning in vocal communication. We define different forms of social learning that affect communication and discuss the required methodology to show each one. We distinguish between contextual and production learning in animal communication. Contextual learning affects the behavioural context or serial position of a signal. It can affect both usage and comprehension. Production learning refers to instances where the signals themselves are modified in form as a result of experience with those of other individuals. Vocal learning is defined as production learning in the vocal domain. It can affect one or more of three systems: the respiratory, phonatory and filter systems. Each involves a different level of control over the sound production apparatus. We hypothesize that contextual learning and respiratory production learning preceded the evolution of phonatory and filter production learning. Each form of learning potentially increases the complexity of a communication system. We also found that unexpected genetic or environmental factors can have considerable effects on vocal behaviour in birds and mammals and are often more likely to cause changes or differences in vocalizations than investigators may assume. Finally, we discuss how production learning is used in innovation and invention, and present important future research questions. Copyright 2000 The Association for the Study of Animal Behaviour.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional morphology and homology in the odontocete nasal complex: implications for sound generation.

              The site and physiologic mechanism(s) responsible for the generation of odontocete biosonar signals have eluded investigators for decades. To address these issues we subjected postmortem toothed whale heads to interrogation using medical imaging techniques. Most of the 40 specimens (from 19 species) were examined using x-ray computed tomography (CT) and/or magnetic resonance imaging (MR). Interpretation of scan images was aided by subsequent dissection of the specimens or, in one case, by cryosectioning. In all specimens we described a similar tissue complex and identified it as the hypothetical biosonar signal generator. This complex includes a small pair of fatty bursae embedded in a pair of connective tissue lips, a cartilaginous blade, a stout ligament, and an array of soft tissue air sacs. Comparing and contrasting the morphologic patterns of nasal structures across species representing every extant odontocete superfamily reveals probable homologous relationships, which suggests that all toothed whales may be making their biosonar signals by a similar mechanism.
                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proc. R. Soc. B
                The Royal Society
                0962-8452
                1471-2954
                January 31 2018
                January 31 2018
                : 285
                : 1871
                : 20172171
                Article
                10.1098/rspb.2017.2171
                5805929
                29386364
                91547351-29f9-4d2a-b8dc-34a8c5370c4d
                © 2018

                http://royalsocietypublishing.org/licence

                History

                Comments

                Comment on this article