0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immediate and persistent antidepressant-like effects of Chaihu-jia-Longgu-Muli-tang are associated with instantly up-regulated BDNF in the hippocampus of mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conventional antidepressants have a disadvantage in delayed onset of efficacy. Here, we aimed to evaluate the immediate and persistent antidepressant-like action of a classic herbal medicine Chaihu-jia-Longgu-Muli decoction (CLM) as well as the action of CLM on hippocampal brain-derived neurotrophic factor (BDNF) over time. CLM consists of Xiaochaihu decoction (XchD), Longgu-Muli (LM) and several other herbs. The contribution of constituent herbal formula XchD and other parts of CLM was also assessed. Following a single dose of CLM, tail suspension test (TST), forced swim test (FST), and novelty-suppressed feeding test (NSF) were performed. The antidepressant activity of XchD, its interaction with LM or remaining parts of CLM was also examined after a single administration. BDNF expression in the hippocampus was examined at 30 min and 24 hr post a single CLM. A single administration of half of clinical dose of CLM elicited antidepressant effects at TST 30 min post administration, and lasted for 72 hr. Furthermore, CLM also reduced the latency to eat in NSF test. A single proportional dose of XchD induced antidepressant effects at 30 min and lasted for 48 hr, whereas the effect lasted for 72 hr when combined with either LM or the remaining parts of CLM. BDNF expression increased at 30 min and persisted at least for 24 hr after a single dose of CLM. The results support that Chaihu-jia-Longgu-Muli decoction was capable to immediately and enduringly elicit antidepressant activity via enhancement of hippocampal BDNF expression, in which the constituent Xiaochaihu decoction played the primary role.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          NMDA Receptor Blockade at Rest Triggers Rapid Behavioural Antidepressant Responses

          Clinical studies consistently demonstrate that a single sub-psychomimetic dose of ketamine, an ionotropic glutamatergic n-methyl-d-aspartate receptor (NMDAR) antagonist, produces fast-acting antidepressant responses in patients suffering from major depressive disorder (MDD), although the underlying mechanism is unclear 1-3 . Depressed patients report alleviation of MDD symptoms within two hours of a single low-dose intravenous infusion of ketamine with effects lasting up to two weeks 1-3 , unlike traditional antidepressants (i.e. serotonin reuptake inhibitors), which take weeks to reach efficacy. This delay is a major drawback to current MDD therapies, leaving a need for faster acting antidepressants particularly for suicide-risk patients 3 . Ketamine's ability to produce rapidly acting, long-lasting antidepressant responses in depressed patients provides a unique opportunity to investigate underlying cellular mechanisms. We show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models that depend on rapid synthesis of brain-derived neurotrophic factor (BDNF). We find that ketamine-mediated NMDAR blockade at rest deactivates eukaryotic elongation factor 2 (eEF2) kinase (also called CaMKIII) resulting in reduced eEF2 phosphorylation and desuppression of BDNF translation. Furthermore, we find inhibitors of eEF2 kinase induce fast-acting behavioural antidepressant-like effects. Our findings suggest that protein synthesis regulation by spontaneous neurotransmission may serve as a viable therapeutic target for fast-acting antidepressant development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice.

            Since its introduction almost 20 years ago, the tail suspension test has become one of the most widely used models for assessing antidepressant-like activity in mice. The test is based on the fact that animals subjected to the short-term, inescapable stress of being suspended by their tail, will develop an immobile posture. Various antidepressant medications reverse the immobility and promote the occurrence of escape-related behaviour. This review focuses on the utility this test as part of a research program aimed at understanding the mechanism of action of antidepressants. We discuss the inherent difficulties in modeling depression in rodents. We describe how the tail suspension differs from the closely related forced swim test. Further, we address some key issues associated with using the TST as a model of antidepressant action. We discuss issues regarding whether it satisfies criteria to be a valid model for assessing depression-related behavioural traits. We elaborate on the tests' ease of use, strain differences observed in the test and gender effects in the test. We focus on the utility of the test for genetic analysis. Furthermore, we discuss the concept of whether immobility maybe a behavioural trait relevant to depression. All of the available pharmacological data using the test in genetically modified mice is collated. Special attention is given to selective breeding programs such as the Rouen 'depressed' mice which have been bred for high and low immobility in the tail suspension test. We provide an extensive pooling of the pharmacological studies published to date using the test. Finally, we provide novel pharmacological validation of an automated system (Bioseb) for assessing immobility. Taken together, we conclude that the tail suspension test is a useful test for assessing the behavioural effects of antidepressant compounds and other pharmacological and genetic manipulations relevant to depression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signaling pathways underlying the rapid antidepressant actions of ketamine.

              Currently available medications have significant limitations, most notably low response rate and time lag for treatment response. Recent clinical studies have demonstrated that ketamine, an NMDA receptor antagonist produces a rapid antidepressant response (within hours) and is effective in treatment resistant depressed patients. Molecular and cellular studies in rodent models demonstrate that ketamine rapidly increases synaptogenesis, including increased density and function of spine synapses, in the prefrontal cortex (PFC). Ketamine also produces rapid antidepressant actions in behavioral models of depression, and reverses the deficits in synapse number and behavior resulting from chronic stress exposure. These effects of ketamine are accompanied by stimulation of the mammalian target of rapamycin (mTOR), and increased levels of synaptic proteins. Together these studies indicate that ketamine rapidly reverses the atrophy of spines in the PFC and thereby causes a functional reconnection of neurons that underlies the rapid behavioral responses. These findings identify new targets for rapid acting antidepressants that are safer than ketamine. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Biosci Rep
                Biosci. Rep
                ppbioscirep
                BSR
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                25 November 2018
                31 January 2019
                11 January 2019
                : 39
                : 1
                : BSR20181539
                Affiliations
                [1 ]Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; No. 100 Cross Street, Hongshan Road, Nanjing 210028, China
                [2 ]Center for Translational Systems Biology and Neuroscience and Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
                [3 ]Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
                [4 ]Brain Hospital Affiliated to Nanjing Medical University; No. 264, Guangzhou Road, Gulou District, Nanjing 210029, China
                [5 ]School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
                [6 ]The Second Affiliated Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine; No.23 Nanhu Road, Jianye District, Nanjing 210017, China
                Author notes
                Correspondence: Gang Chen ( hdn_2001@ 123456yahoo.com )
                Author information
                http://orcid.org/0000-0001-7271-0886
                Article
                10.1042/BSR20181539
                6328878
                30473537
                9169e6a3-0fda-4bc3-87fc-dd5cf8912ac4
                © 2019 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 04 September 2018
                : 14 November 2018
                : 15 November 2018
                Page count
                Pages: 11
                Categories
                Research Articles
                Research Article
                36
                49
                51
                48

                Life sciences
                bdnf,chaihu-jia-longgu-muli-tang,immediate and persistent antidepressant-like effects,ketamine

                Comments

                Comment on this article