60
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Self Organizing Maps for the Parametric Analysis of COVID-19 SEIRS Delayed Model

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since 2019, entire world is facing the accelerating threat of Corona Virus, with its third wave on its way, although accompanied with several vaccination strategies made by world health organization. The control on the transmission of the virus is highly desired, even though several key measures have already been made, including masks, sanitizing and disinfecting measures. The ongoing research, though devoted to this pandemic, has certain flaws, due to which no permanent solution has been discovered. Currently different data based studies have emerged but unfortunately, the pandemic fate is still unrevealed. During this research, we have focused on a compartmental model, where delay is taken into account from one compartment to another. The model depicts the dynamics of the disease relative to time and constant delays in time. A deep learning technique called “Self Organizing Map” is used to extract the parametric values from the data repository of COVID-19. The input we used for SOM are the attributes on which, the variables are dependent. Different grouping/clustering of patients were achieved with 2- dimensional visualization of the input data ( h t t p s : / / c r e a t i v e c o m m o n s . o r g / l i c e n s e s / b y / 2.0 / ). Extensive stability analysis and numerical results are presented in this manuscript which can help in designing control measures.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection

          Understanding immune memory to SARS-CoV-2 is critical for improving diagnostics and vaccines, and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months post-infection. IgG to the Spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month post symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3-5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes

            SARS-CoV-2 virus, the causative agent of the coronavirus infectious disease-19 (COVID-19), is taking the globe by storm, approaching 500,000 confirmed cases and over 21,000 deaths as of March 25, 2020. While under control in some affected Asian countries (Taiwan, Singapore, Vietnam), the virus demonstrated an exponential phase of infectivity in several large countries (China in late January and February and many European countries and the USA in March), with cases exploding by 30–50,000/day in the third and fourth weeks of March, 2020. SARS-CoV-2 has proven to be particularly deadly to older adults and those with certain underlying medical conditions, many of whom are of advanced age. Here, we briefly review the virus, its structure and evolution, epidemiology and pathogenesis, immunogenicity and immune, and clinical response in older adults, using available knowledge on SARS-CoV-2 and its highly pathogenic relatives MERS-CoV and SARS-CoV-1. We conclude by discussing clinical and basic science approaches to protect older adults against this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Why is it difficult to accurately predict the COVID-19 epidemic?

              Since the COVID-19 outbreak in Wuhan City in December of 2019, numerous model predictions on the COVID-19 epidemics in Wuhan and other parts of China have been reported. These model predictions have shown a wide range of variations. In our study, we demonstrate that nonidentifiability in model calibrations using the confirmed-case data is the main reason for such wide variations. Using the Akaike Information Criterion (AIC) for model selection, we show that an SIR model performs much better than an SEIR model in representing the information contained in the confirmed-case data. This indicates that predictions using more complex models may not be more reliable compared to using a simpler model. We present our model predictions for the COVID-19 epidemic in Wuhan after the lockdown and quarantine of the city on January 23, 2020. We also report our results of modeling the impacts of the strict quarantine measures undertaken in the city after February 7 on the time course of the epidemic, and modeling the potential of a second outbreak after the return-to-work in the city.
                Bookmark

                Author and article information

                Journal
                Chaos Solitons Fractals
                Chaos Solitons Fractals
                Chaos, Solitons, and Fractals
                Elsevier Ltd.
                0960-0779
                0960-0779
                24 June 2021
                24 June 2021
                : 111202
                Affiliations
                [a ]Institute of Systems Security and Control, College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China
                [b ]Department of Mathematics, Comsats Institute of Information Technology, Lahore 54000, Pakistan
                [c ]Jamoum University College, Umm Al-Qura University, Alshohdaa 25371, Jamoum, Makkah, Saudi Arabia
                [d ]Faculty of Computers and Informatics, Suez Canal University, New Campus, 4.5 Km, Ring Road, El Salam District, 41522 Ismailia, Egypt
                Author notes
                [* ]Corresponding author.
                Article
                S0960-0779(21)00556-7 111202
                10.1016/j.chaos.2021.111202
                8221985
                9236434f-015a-4b69-8c4b-52e117896c99
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 6 November 2020
                : 11 June 2021
                : 12 June 2021
                Categories
                Article

                dynamical analysis,numerical simulations,delayed differential equations,stability analysis,sars-2

                Comments

                Comment on this article