Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeted Sequencing of Respiratory Viruses in Clinical Specimens for Pathogen Identification and Genome-Wide Analysis

      chapter-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A large number of viruses can individually and concurrently cause various respiratory illnesses. Metagenomic sequencing using next-generation sequencing (NGS) technology is capable of identifying a variety of pathogens. Here, we describe a method using a large panel of oligo probes to enrich sequence targets of 34 respiratory DNA and RNA viruses that reduces non-viral reads in NGS data and achieves high performance of sequencing-based pathogen identification. The approach can be applied to total nucleic acids purified from respiratory swabs stored in viral transport medium. Illumina TruSeq RNA Access Library procedure is used in targeted sequencing of respiratory viruses. The samples are subjected to RNA fragmentation, random reverse transcription, random PCR amplification, and ligation with barcoded library adaptors. The libraries are pooled and subjected to two rounds of enrichments by using a large panel of oligos designed to capture whole genomes of 34 respiratory viruses. The enriched libraries are amplified and sequenced using Illumina MiSeq sequencing system and reagents. This method can achieve viral detection sensitivity comparable with molecular assay and obtain partial to complete genome sequences for each virus to allow accurate genotyping and variant analysis.

          Electronic supplementary material:

          The online version of this chapter (10.1007/978-1-4939-8682-8_10) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Assessment of the latest NGS enrichment capture methods in clinical context

          Enrichment capture methods for NGS are widely used, however, they evolve rapidly and it is necessary to periodically measure their strengths and weaknesses before transfer to diagnostic services. We assessed two recently released custom DNA solution-capture enrichment methods for NGS, namely Illumina NRCCE and Agilent SureSelectQXT, against a reference method NimbleGen SeqCap EZ Choice on a similar gene panel, sharing 678 kb and 110 genes. Two Illumina MiSeq runs of 12 samples each have been performed, for each of the three methods, using the same 24 patients (affected with sensorineural disorders). Technical outcomes have been computed and compared, including depth and evenness of coverage, enrichment in targeted regions, performance in GC-rich regions and ability to generate consistent variant datasets. While we show that the three methods resulted in suitable datasets for standard DNA variant discovery, we describe significant differences between the results for the above parameters. NimbleGen offered the best depth of coverage and evenness, while NRCCE showed the highest on target levels but high duplicate rates. SureSelectQXT showed an overall quality close to that of NimbleGen. The new methods exhibit reduced preparation time but behave differently. These findings will guide laboratories in their choice of library enrichment approach.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Evaluation of custom multiplex real - time RT - PCR in comparison to fast - track diagnostics respiratory 21 pathogens kit for detection of multiple respiratory viruses

            Background Severe acute respiratory infections in children can be fatal, rapid identification of the causative agent and timely treatment can be life saving. Multiplex real time RT-PCR helps in simultaneous detection of multiple viruses saving cost, time and labour. Commercially available multiplex real time RT-PCR kits are very expensive. Therefore the aim of the present study was to develop a cost effective multiplex real time RT-PCR for the detection of 18 respiratory viruses and compare it with an in-vitro diagnostics approved Fast Track Diagnostic Respiratory Pathogens 21 Kit (FTD). Methods Nasopharyngeal aspirates and throat swabs were collected and processed for extraction of nucleic acid using an automated extraction system and multiplex real time RT-PCR was performed using the FTD kit and a custom assay on 356 samples. Results Custom and FTD assays detected one or more respiratory viruses in 268 (75.29 %) and 262 (73.60 %) samples respectively. The concordance between the custom assay and the FTD assay was 100 % for HCoV OC43, HCoV 229E, HPIV-1, HPIV-2, HBoV, HPeV, Flu A, and Influenza A(H1N1)pdm09 and 94.66 – 99.71 % for the remaining viruses; Flu B (99.71 %), HRV (99.71 %), HPIV-3 (98.87 %), HPIV-4 (99.43 %), HCoV NL63 (99.71 %), HMPV A/B (99.71 %), RSV A/B (94.66 %), EV (98.31 %), HCoV HKU1 (99.71 %), HAdV (99.71 %). Major discrepancy was observed for RSV A/B, which was over detected in 18 samples by the custom assay as compared to the FTD assay. The custom assay was much cheaper than the FTD assay and the time taken was only 29 min more. Conclusion The custom primer and probe mix was found to be comparable to the FTD assay with good concordance but was much cheaper and the time taken for reporting was only 29 min more. The low cost custom multiplex RT-PCR can be a useful alternative to the costly FTD kit for rapid identification of viral aetiology in resource limited settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Development and Evaluation of a Panel of Filovirus Sequence Capture Probes for Pathogen Detection by Next-Generation Sequencing

              A detailed understanding of the circulating pathogens in a particular geographic location aids in effectively utilizing targeted, rapid diagnostic assays, thus allowing for appropriate therapeutic and containment procedures. This is especially important in regions prevalent for highly pathogenic viruses co-circulating with other endemic pathogens such as the malaria parasite. The importance of biosurveillance is highlighted by the ongoing Ebola virus disease outbreak in West Africa. For example, a more comprehensive assessment of the regional pathogens could have identified the risk of a filovirus disease outbreak earlier and led to an improved diagnostic and response capacity in the region. In this context, being able to rapidly screen a single sample for multiple pathogens in a single tube reaction could improve both diagnostics as well as pathogen surveillance. Here, probes were designed to capture identifying filovirus sequence for the ebolaviruses Sudan, Ebola, Reston, Taï Forest, and Bundibugyo and the Marburg virus variants Musoke, Ci67, and Angola. These probes were combined into a single probe panel, and the captured filovirus sequence was successfully identified using the MiSeq next-generation sequencing platform. This panel was then used to identify the specific filovirus from nonhuman primates experimentally infected with Ebola virus as well as Bundibugyo virus in human sera samples from the Democratic Republic of the Congo, thus demonstrating the utility for pathogen detection using clinical samples. While not as sensitive and rapid as real-time PCR, this panel, along with incorporating additional sequence capture probe panels, could be used for broad pathogen screening and biosurveillance.
                Bookmark

                Author and article information

                Contributors
                andres.moya@uv.es
                perez_vicbro@gva.es
                jun.hang.civ@mail.mil
                Journal
                978-1-4939-8682-8
                10.1007/978-1-4939-8682-8
                The Human Virome
                The Human Virome
                Methods and Protocols
                978-1-4939-8681-1
                978-1-4939-8682-8
                12 May 2018
                2018
                : 1838
                : 125-140
                Affiliations
                [2 ]ISNI 0000 0001 2173 938X, GRID grid.5338.d, Institute for Integrative Systems Biology, , University of València, ; València, Spain
                [3 ]GRID grid.484129.2, Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), ; València, Spain
                [4 ]ISNI 0000 0001 0036 4726, GRID grid.420210.5, Viral Diseases Branch, , Walter Reed Army Institute of Research, ; Silver Spring, MD USA
                [5 ]ISNI 0000 0004 0507 3954, GRID grid.185669.5, Illumina, Inc., ; San Diego, CA USA
                Article
                10
                10.1007/978-1-4939-8682-8_10
                7121196
                30128994
                924fa78b-b398-46b3-92ed-9e44a1aece2e
                © Springer Science+Business Media, LLC, part of Springer Nature 2018

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2018

                targeted sequencing,next-generation sequencing,genotyping,respiratory disease,respiratory virus,viral enrichment,pathogen discovery,virome

                Comments

                Comment on this article