12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interstitial fibrosis plays a key role in the development and progression of heart failure. Here, we show that an enzyme that crosslinks collagen—Lysyl oxidase-like 2 (Loxl2)—is essential for interstitial fibrosis and mechanical dysfunction of pathologically stressed hearts. In mice, cardiac stress activates fibroblasts to express and secrete Loxl2 into the interstitium, triggering fibrosis, systolic and diastolic dysfunction of stressed hearts. Antibody-mediated inhibition or genetic disruption of Loxl2 greatly reduces stress-induced cardiac fibrosis and chamber dilatation, improving systolic and diastolic functions. Loxl2 stimulates cardiac fibroblasts through PI3K/AKT to produce TGF-β2, promoting fibroblast-to-myofibroblast transformation; Loxl2 also acts downstream of TGF-β2 to stimulate myofibroblast migration. In diseased human hearts, LOXL2 is upregulated in cardiac interstitium; its levels correlate with collagen crosslinking and cardiac dysfunction. LOXL2 is also elevated in the serum of heart failure (HF) patients, correlating with other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human HF.

          Abstract

          Lysyl oxidase-like 2 (LOXL2) is an enzyme that promotes scaffolding of extracellular matrix proteins. Here the authors show that LOXL2 is crucial for pressure-overload induced cardiac fibrosis, and that antibody-mediated inhibition or genetic disruption of Loxl2 in mice shows therapeutic potential for treatment of cardiac fibrosis.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system.

          ST2 is an IL-1 receptor family member with transmembrane (ST2L) and soluble (sST2) isoforms. sST2 is a mechanically induced cardiomyocyte protein, and serum sST2 levels predict outcome in patients with acute myocardial infarction or chronic heart failure. Recently, IL-33 was identified as a functional ligand of ST2L, allowing exploration of the role of ST2 in myocardium. We found that IL-33 was a biomechanically induced protein predominantly synthesized by cardiac fibroblasts. IL-33 markedly antagonized angiotensin II- and phenylephrine-induced cardiomyocyte hypertrophy. Although IL-33 activated NF-kappaB, it inhibited angiotensin II- and phenylephrine-induced phosphorylation of inhibitor of NF-kappa B alpha (I kappa B alpha) and NF-kappaB nuclear binding activity. sST2 blocked antihypertrophic effects of IL-33, indicating that sST2 functions in myocardium as a soluble decoy receptor. Following pressure overload by transverse aortic constriction (TAC), ST2(-/-) mice had more left ventricular hypertrophy, more chamber dilation, reduced fractional shortening, more fibrosis, and impaired survival compared with WT littermates. Furthermore, recombinant IL-33 treatment reduced hypertrophy and fibrosis and improved survival after TAC in WT mice, but not in ST2(-/-) littermates. Thus, IL-33/ST2 signaling is a mechanically activated, cardioprotective fibroblast-cardiomyocyte paracrine system, which we believe to be novel. IL-33 may have therapeutic potential for beneficially regulating the myocardial response to overload.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment.

            We have identified a new role for the matrix enzyme lysyl oxidase-like-2 (LOXL2) in the creation and maintenance of the pathologic microenvironment of cancer and fibrotic disease. Our analysis of biopsies from human tumors and fibrotic lung and liver tissues revealed an increase in LOXL2 in disease-associated stroma and limited expression in healthy tissues. Targeting LOXL2 with an inhibitory monoclonal antibody (AB0023) was efficacious in both primary and metastatic xenograft models of cancer, as well as in liver and lung fibrosis models. Inhibition of LOXL2 resulted in a marked reduction in activated fibroblasts, desmoplasia and endothelial cells, decreased production of growth factors and cytokines and decreased transforming growth factor-beta (TGF-beta) pathway signaling. AB0023 outperformed the small-molecule lysyl oxidase inhibitor beta-aminoproprionitrile. The efficacy and safety of LOXL2-specific AB0023 represents a new therapeutic approach with broad applicability in oncologic and fibrotic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA

              CRISPR/Cas mediated genome editing has been successfully demonstrated in mammalian cells and further applications for generating mutant mice were reported by injecting humanized Cas9 (hCas) mRNA and single guide RNA into fertilized eggs. Here we inject the circular plasmids expressing hCas9 and sgRNA into mouse zygotes and obtained mutant mice within a month. When we targeted the Cetn1 locus, 58.8% (10/17) of the pups carried the mutations and six of them were homozygously mutated. Co-injection of the plasmids targeting different loci resulted in the successful removal of the flanked region in two out of three mutant pups. The efficient mutagenesis was also observed at the Prm1 locus. Among the 46 offspring carrying CRISPR/Cas plasmid mediated mutations, only two of them carried the hCas9 transgene. The pronuclear injection of circular plasmid expressing hCas9/sgRNA complex is a rapid, simple, and reproducible method for targeted mutagenesis.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                14 December 2016
                2016
                : 7
                : 13710
                Affiliations
                [1 ]Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana 46202, USA
                [2 ]Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, USA
                [3 ]Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana 46202, USA
                [4 ]Department of Cardiology, Campus Virchow-Klinikum, Charité University Medicine Berlin , 13353 Berlin, Germany
                [5 ]Berlin-Brandenburg Centre for Regenerative Therapies, Charité University Medicine Berlin , 10117 Berlin, Germany
                [6 ]Gilead Sciences Inc. , Foster City, California 94404, USA
                [7 ]Division of Cardiovascular Medicine, Stanford University , Stanford, California 94305, USA
                [8 ]Program of Cardiovascular Diseases, Centre for Applied Medical Research, Department of Cardiology and Cardiac Surgery, University Clinic, University of Navarra , 31008 Pamplona, Spain
                [9 ]DZHK, German Centre for Cardiovascular Research, Partner Site Berlin – Charité , 13347 Berlin, Germany
                Author notes
                [*]

                These authors contributed equally to this work

                Article
                ncomms13710
                10.1038/ncomms13710
                5171850
                27966531
                925ffaf1-5941-4fe4-a2f8-bc920db18a67
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 August 2016
                : 26 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article