58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Out of the Black Sea: Phylogeography of the Invasive Killer Shrimp Dikerogammarus villosus across Europe

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The amphipod Dikerogammarus villosus has colonized most of the European main inland water bodies in less than 20 years, having deteriorating effect on the local benthic communities. Our aim was to reveal the species phylogeography in the native Black Sea area, to define the source populations for the colonization routes in continental Europe and for the newly established UK populations. We tested for the loss of genetic diversity between source and invasive populations as well as along invasion route. We tested also for isolation by distance. Thirty three native and invasive populations were genotyped for mtDNA (COI, 16S) and seven polymorphic nuclear microsatellites to assess cryptic diversity (presence of deeply divergent lineages), historical demography, level of diversity within lineage (e.g., number of alleles), and population structure. A wide range of methods was used, including minimum spanning network, molecular clock, Bayesian clustering and Mantel test. Our results identified that sea level and salinity changes during Pleistocene impacted the species phylogeography in the Black Sea native region with four differentiated populations inhabiting, respectively, the Dnieper, Dniester, Danube deltas and Durungol liman. The invasion of continental Europe is associated with two sources, i.e., the Danube and Dnieper deltas, which gave origin to two independent invasion routes (Western and Eastern) for which no loss of diversity and no isolation by distance were observed. The UK population has originated in the Western Route and, despite very recent colonization, no drastic loss of diversity was observed. The results show that the invasion of the killer shrimp is not associated with the costs of loosing genetic diversity, which may contribute to the success of this invader in the newly colonized areas. Additionally, while it has not yet occurred, it might be expected that future interbreeding between the genetically diversified populations from two independent invasion routes will potentially even enhance this success.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sequence alignment with the Clustal series of programs.

          R Chenna (2003)
          The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phenotypic and genetic differentiation between native and introduced plant populations.

            Plant invasions often involve rapid evolutionary change. Founder effects, hybridization, and adaptation to novel environments cause genetic differentiation between native and introduced populations and may contribute to the success of invaders. An influential idea in this context has been the Evolution of Increased Competitive Ability (EICA) hypothesis. It proposes that after enemy release plants rapidly evolve to be less defended but more competitive, thereby increasing plant vigour in introduced populations. To detect evolutionary change in invaders, comparative studies of native versus introduced populations are needed. Here, we review the current empirical evidence from: (1) comparisons of phenotypic variation in natural populations; (2) comparisons of molecular variation with neutral genetic markers; (3) comparisons of quantitative genetic variation in a common environment; and (4) comparisons of phenotypic plasticity across different environments. Field data suggest that increased vigour and reduced herbivory are common in introduced plant populations. In molecular studies, the genetic diversity of introduced populations was not consistently different from that of native populations. Multiple introductions of invasive plants appear to be the rule rather than the exception. In tests of the EICA hypothesis in a common environment, several found increased growth or decreased resistance in introduced populations. However, few provided a full test of the EICA hypothesis by addressing growth and defence in the same species. Overall, there is reasonable empirical evidence to suggest that genetic differentiation through rapid evolutionary change is important in plant invasions. We discuss conceptual and methodological issues associated with cross-continental comparisons and make recommendations for future research. When testing for EICA, greater emphasis should be put on competitive ability and plant tolerance. Moreover, it is important to address evolutionary change in characteristics other than defence and growth that could play a role in plant invasions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reconstructing routes of invasion using genetic data: why, how and so what?

              Detailed knowledge about the geographical pathways followed by propagules from their source to the invading populations--referred to here as routes of invasion-provides information about the history of the invasion process and the origin and genetic composition of the invading populations. The reconstruction of invasion routes is required for defining and testing different hypotheses concerning the environmental and evolutionary factors responsible for biological invasions. In practical terms, it facilitates the design of strategies for controlling or preventing invasions. Most of our knowledge about the introduction routes of invasive species is derived from historical and observational data, which are often sparse, incomplete and, sometimes, misleading. In this context, population genetics has proved a useful approach for reconstructing routes of introduction, highlighting the complexity and the often counterintuitive nature of the true story. This approach has proved particularly useful since the recent development of new model-based methods, such as approximate Bayesian computation, making it possible to make quantitative inferences in the complex evolutionary scenarios typically encountered in invasive species. In this review, we summarize some of the fundamental aspects of routes of invasion, explain why the reconstruction of these routes is useful for addressing both practical and theoretical questions, and comment on the various reconstruction methods available. Finally, we consider the main insights obtained to date from studies of invasion routes. © 2010 Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 February 2015
                2015
                : 10
                : 2
                : e0118121
                Affiliations
                [1 ]University of Lodz, Department of Invertebrate Zoology and Hydrobiology, Łódź, Poland
                [2 ]Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Dijon, France
                University of Windsor, CANADA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KBS RW MG T. Rewicz T. Rigaud. Performed the experiments: T. Rewicz MG KBS RW. Analyzed the data: T. Rewicz RW KBS MG. Wrote the paper: T. Rewicz RW KBS MG. Prepared graphics: T. Rewicz KBS. Conceived the ideas KBS RW MG T. Rewicz T. Rigaud.

                Article
                PONE-D-14-33279
                10.1371/journal.pone.0118121
                4333216
                25692865
                9292b3ce-2b02-48eb-be08-b0fc30147323
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 25 July 2014
                : 7 January 2015
                Page count
                Figures: 6, Tables: 4, Pages: 20
                Funding
                The study was funded within the Polish Ministry for Science and Higher Education grants: sampling (NN304081535, NN304350139, N N303 579439), molecular analysis (NN304350139). Karolina Bącela-Spychalska was funded by a post-doctoral grant from the Region Bourgogne (grant #07HCP 59) and from the French Foreign Office (Programe Egide, grant # 604506E). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article