0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Convolutional Autoencoder Approach for Boosting the Specificity of Retinal Blood Vessels Segmentation

      , , , , ,
      Applied Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Automated retina vessel segmentation of the human eye plays a vital role as it can significantly assist ophthalmologists in identifying many eye diseases, such as diabetes, stroke, arteriosclerosis, cardiovascular disease, and many other human illnesses. The fast, automatic and accurate retina vessel segmentation of the eyes is very desirable. This paper introduces a novel fully convolutional autoencoder for the retina vessel segmentation task. The proposed model consists of eight layers, each consisting of convolutional2D layers, MaxPooling layers, Batch Normalisation layers and more. Our model has been trained and evaluated on DRIVE and STARE datasets with 35 min of training time. The performance of the autoencoder model we introduce is assessed on two public datasets, the DRIVE and the STARE and achieved quite competitive results compared to the state-of-the-art methods in the literature. In particular, our model reached an accuracy of 95.73, an AUC_ROC of 97.49 on the DRIVE dataset, and an accuracy of 96.92 and an AUC ROC of 97.57 on the STARE dataset. Furthermore, our model has demonstrated the highest specificity among the methods in the literature, reporting a specificity of 98.57 on the DRIVE and 98.7 on the STARE dataset, respectively. The above statement can be noticed in the final blood vessel segmentation images produced by our convolutional autoencoder method since the segmentations are more accurate, sharp and noiseless than the result images of other proposed methods.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Adaptive histogram equalization and its variations

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retinal imaging and image analysis.

            Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              DUNet: A deformable network for retinal vessel segmentation

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                March 2023
                March 03 2023
                : 13
                : 5
                : 3255
                Article
                10.3390/app13053255
                9352f295-de7c-4c64-a0de-5e2b07af379f
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article