99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes ( N) and the average degree ( k) of the network. The explicit form of that influence depends on the type of network topology, which is usually unknown for experimental data. Direct comparisons of graph measures between empirical networks with different N and/or k can therefore yield spurious results. We list benefits and pitfalls of various approaches that intend to overcome these difficulties. We discuss the initial graph definition of unweighted graphs via fixed thresholds, average degrees or edge densities, and the use of weighted graphs. For instance, choosing a threshold to fix N and k does eliminate size and density effects but may lead to modifications of the network by enforcing (ignoring) non-significant (significant) connections. Opposed to fixing N and k, graph measures are often normalized via random surrogates but, in fact, this may even increase the sensitivity to differences in N and k for the commonly used clustering coefficient and small-world index. To avoid such a bias we tried to estimate the N, k-dependence for empirical networks, which can serve to correct for size effects, if successful. We also add a number of methods used in social sciences that build on statistics of local network structures including exponential random graph models and motif counting. We show that none of the here-investigated methods allows for a reliable and fully unbiased comparison, but some perform better than others.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small-world anatomical networks in the human brain revealed by cortical thickness from MRI.

            An important issue in neuroscience is the characterization for the underlying architectures of complex brain networks. However, little is known about the network of anatomical connections in the human brain. Here, we investigated large-scale anatomical connection patterns of the human cerebral cortex using cortical thickness measurements from magnetic resonance images. Two areas were considered anatomically connected if they showed statistically significant correlations in cortical thickness and we constructed the network of such connections using 124 brains from the International Consortium for Brain Mapping database. Significant short- and long-range connections were found in both intra- and interhemispheric regions, many of which were consistent with known neuroanatomical pathways measured by human diffusion imaging. More importantly, we showed that the human brain anatomical network had robust small-world properties with cohesive neighborhoods and short mean distances between regions that were insensitive to the selection of correlation thresholds. Additionally, we also found that this network and the probability of finding a connection between 2 regions for a given anatomical distance had both exponentially truncated power-law distributions. Our results demonstrated the basic organizational principles for the anatomical network in the human brain compatible with previous functional networks studies, which provides important implications of how functional brain states originate from their structural underpinnings. To our knowledge, this study provides the first report of small-world properties and degree distribution of anatomical networks in the human brain using cortical thickness measurements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The small world of the cerebral cortex.

              While much information is available on the structural connectivity of the cerebral cortex, especially in the primate, the main organizational principles of the connection patterns linking brain areas, columns and individual cells have remained elusive. We attempt to characterize a wide variety of cortical connectivity data sets using a specific set of graph theory methods. We measure global aspects of cortical graphs including the abundance of small structural motifs such as cycles, the degree of local clustering of connections and the average path length. We examine large-scale cortical connection matrices obtained from neuroanatomical data bases, as well as probabilistic connection matrices at the level of small cortical neuronal populations linked by intra-areal and inter-areal connections. All cortical connection matrices examined in this study exhibit "small-world" attributes, characterized by the presence of abundant clustering of connections combined with short average distances between neuronal elements. We discuss the significance of these universal organizational features of cortex in light of functional brain anatomy. Supplementary materials are at www.indiana.edu/~cortex/lab.htm.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                28 October 2010
                : 5
                : 10
                : e13701
                Affiliations
                [1 ]Research Institute MOVE, VU University Amsterdam, Amsterdam, The Netherlands
                [2 ]Department of Clinical Neurophysiology, VU University Medical Center, Amsterdam, The Netherlands
                Indiana University, United States of America
                Author notes

                Analyzed the data: BCMvW AD. Contributed reagents/materials/analysis tools: BCMvW AD. Wrote the paper: BCMvW CJS AD.

                Article
                09-PONE-RA-15098R2
                10.1371/journal.pone.0013701
                2965659
                21060892
                939519d2-296b-4f54-9c6b-99025b54a695
                van Wijk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 December 2009
                : 7 October 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Neuroscience
                Neuroscience/Cognitive Neuroscience
                Neuroscience/Theoretical Neuroscience

                Uncategorized
                Uncategorized

                Comments

                Comment on this article