1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bayesian learning for neural networks: an algorithmic survey

      ,
      Artificial Intelligence Review
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The last decade witnessed a growing interest in Bayesian learning. Yet, the technicality of the topic and the multitude of ingredients involved therein, besides the complexity of turning theory into practical implementations, limit the use of the Bayesian learning paradigm, preventing its widespread adoption across different fields and applications. This self-contained survey engages and introduces readers to the principles and algorithms of Bayesian Learning for Neural Networks. It provides an introduction to the topic from an accessible, practical-algorithmic perspective. Upon providing a general introduction to Bayesian Neural Networks, we discuss and present both standard and recent approaches for Bayesian inference, with an emphasis on solutions relying on Variational Inference and the use of Natural gradients. We also discuss the use of manifold optimization as a state-of-the-art approach to Bayesian learning. We examine the characteristic properties of all the discussed methods, and provide pseudo-codes for their implementation, paying attention to practical aspects, such as the computation of the gradients.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Learning representations by back-propagating errors

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Equation of State Calculations by Fast Computing Machines

                Bookmark

                Author and article information

                Journal
                Artificial Intelligence Review
                Artif Intell Rev
                Springer Science and Business Media LLC
                0269-2821
                1573-7462
                October 2023
                March 15 2023
                October 2023
                : 56
                : 10
                : 11773-11823
                Article
                10.1007/s10462-023-10443-1
                93a25625-460c-4b58-9754-1ffa42078d79
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article